共查询到20条相似文献,搜索用时 15 毫秒
1.
Body segment inertial parameters (BSIPs) are important data in biomechanics. They are usually estimated from predictive equations reported in the literature. However, most of the predictive equations are ambiguously applicable in the conventional 3D segment coordinate systems (SCSs). Also, the predictive equations reported in the literature all include two assumptions: the centre of mass and the proximal and distal endpoints are assumed to be aligned, and the inertia tensor is assumed to be principal in the segment axes. These predictive equations, restraining both position of the centre of mass and orientation of the principal axes of inertia, become restrictive when computing 3D inverse dynamics, when analyzing the influence of BSIP estimations on joint forces and moments and when evaluating personalized 3D BSIPs obtained from medical imaging. In the current study, the extensive data from McConville et al. (1980. Anthropometric relationships of body and body segment moments of inertia. AFAMRL-TR-80-119, Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio) and from Young et al. (1983. Anthropometric and mass distribution characteristics of the adults female. Technical Report AFAMRL-TR-80-119, FAA Civil Aeromedical Institute, Oklaoma City, Oklaoma) are adjusted in order to correspond to joint centres and to conventional segment axes. In this way, scaling equations are obtained for both males and females that provide BSIPs which are directly applicable in the conventional SCSs and do not restrain the position of the centre of mass and the orientation of the principal axes. These adjusted scaling equations may be useful for researchers who wish to use appropriate 3D BSIPs for posture and movement analysis. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
Bezprozvanny I Supnet C Sun S Zhang H De Strooper B 《The Journal of biological chemistry》2012,287(24):20469; author reply 20470
11.
R K Jensen 《Journal of biomechanics》1986,19(5):359-368
The segment inertial parameters of children are fundamental to the analysis and simulation of their movements. Generally it has been recognized that adult parameters cannot be extrapolated and most of the anthropometric data on children are of little or no use for determining inertias. Consequently, there have been few studies of children's kinetics. In response to this problem a longitudinal investigation, the Laurentian Study of Biomechanical Development, was launched and in this paper the effects of growth on selected segmental size and inertial parameters are reported for boys between the ages of 4 and 15 yr. The twelve subjects, representing heterogeneous body types were followed over 3 yr for a total of 36 observations. Elliptical zones 2 cm wide were used to model the body and segment inertias calculated using segment densities from the literature. These inertias were the mass, moment of inertia and mass centroid location for a fourteen segment planar representation of the body. The general accuracy mean error based on body mass was 0.203% which is consistent with reports from similar studies and techniques. Plots of segment mass proportions with respect to age showed a decrease in the head proportion balanced by increases in the thigh, shank, foot and upper arm proportions in particular. The trends for each segment were consistent with the trends for linear measures reported in the anthropometry literature. Radius proportions to the mass centroid and radius of gyration proportions were also plotted and showed smaller but consistent changes with respect to age. Linear regressions were then fitted to the distributions and standard errors calculated. The magnitude and slope of the regressions were for the most part consistent with a reported cross-sectional study of Japanese children. Where data were available, predicted parameters were compared with the reported parameters for a 12 yr old analyzed using a different mathematical model. Comparisons were also made between the predicted parameters at 15 yr and the reported parameters for healthy young adults who had been scanned using a gamma-radiation technique. For most parameters there was either good agreement or differences could be explained logically. The traditionally used parameters from older cadavers were quite inconsistent with the above. The variances of the 36 observations about the regression lines as indicated by the standard errors were small. As an illustration of the effect of these variances, the trunk parameters for a 10 yr old performing a standing jump for distance were decreased by 1 S.E. and this matched by increases for the thigh, shank and head.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
12.
13.
B. Louise Chilvers 《Polar Biology》2012,35(10):1619-1620
14.
Webb G 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2011,159(3):346; author reply 347-346; author reply 348
15.
16.
17.
18.
19.