首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

2.
By generating two types of transgenic mice we have investigated how extrathymic events can contribute to self tolerance. The major histocompatibility complex class I gene Kb was expressed under the control of the glial fibrillary acidic protein promoter in cells of neuroectodermal origin outside the thymus. These mice were tolerant to Kb. When crossed to transgenic mice expressing a Kb-specific T cell receptor (TCR), clonotype+, CD8+CD4- mature T cells could be detected in normal numbers in the thymus of the double-transgenic mice but were strongly reduced in spleen and lymph nodes in comparison with TCR single-transgenic mice. After isolation of clonotype negative splenic T cells and activation in vitro, reappearance of the clonotype+, CD8+CD4- cells was observed. These results indicate that down-regulation of TCR and CD8 molecules on the antigen-specific T cells is a novel mechanism, by which peripheral tolerance to this antigen can occur.  相似文献   

3.
Population size of V beta 17a brightly positive cells among CD4(-)8+ thymocytes was analyzed in thymic chimeras as well as bone marrow (BM) chimeras in which SWR/J mice were used as BM donors and various strains of mice including H-2Kb mutant (bm) mice as recipients. It was shown that the proportion of V beta 17a+ CD4(-)8+ thymocytes was determined by H-2K molecules expressed on thymic epithelial cells. The highest proportion was observed in Ks and Kb thymuses, the intermediate proportion in Ks/q and Kk, and the lowest in Kq thymuses. Fine analysis of the H-2Kbm molecules involved in the positive selection revealed that the region important to the selection was located on the beta-pleated floor of antigen recognition site. According to the three-dimensional class I structure, this site appears not to be directly accessible to the T cell antigen receptor. Thus, the present finding suggests that the substitutions of amino acids at this site alter the shape and charge of the peptide binding site and eventually influence the positive selection of the V beta 17a+ T cell repertoire during differentiation.  相似文献   

4.
To elucidate the acquisition of self tolerance in the thymus, full-allogeneic thymic chimeras were constructed. Athymic C3H and BALB/c nude mice were reconstituted with the thymic lobes of BALB/c and B10.BR fetuses, respectively, that were organ cultured for 5 days in the presence of 2'-deoxyguanosine. T cells in these chimeras were tolerized to the host MHC in both MLR and CTL assays. In contrast, T cells in the chimeras exhibited split tolerance for the thymic MHC haplotype. CTL specific for class I MHC of the thymic haplotype were generated not only from the peripheral T cells of the chimeras but also from thymocytes re-populated in the engrafted thymic lobes. However, T cells in these chimeras responded poorly to the class II MHC of the thymic haplotype in a standard MLR assay. In a syngeneic MLR culture upon stimulation with enriched APC of the thymic haplotype, only 22 to 48% of the responses were mediated by CD4+ cells, and proliferations of CD4- cells were prominent. There were no haplotype-specific suppressor cells detected which would cause the unresponsiveness to the thymic class II MHC. These results indicated that the thymic lobes treated with 2'-deoxyguanosine were defective in the ability to induce the transplantation tolerance for the class I MHC expressed on the thymus, although the same thymic lobes were able to induce the transplantation tolerance for the thymic class II MHC.  相似文献   

5.
Expression and function of the UM4D4 antigen in human thymus   总被引:3,自引:0,他引:3  
UM4D4 is a newly identified T cell surface molecule, distinct from the Ag receptor and CD2, which is expressed on 25% of peripheral blood T cells, resting or activated. Monoclonal anti-UM4D4 is mitogenic for T cells and T cell clones. Since alternative activation pathways independent of Ag/MHC recognition may be important in thymic differentiation, the expression and function of UM4D4 was examined in human thymus. UM4D4 was found on the surface of 6% of thymocytes. All thymocyte subsets contained UM4D4+ cells but expression was greatest on thymocytes that were CD1- (12%), CD3+ (11%) and especially CD4-CD8- (18%). CD3+CD4- CD8- cells, most of which bear the gamma delta-receptor, were greater than or equal to 50% + for UM4D4. Moreover, anti-UM4D4 was comitogenic for thymocytes together with PMA or IL-2. Anti-UM4D4 also reacted strongly with a subset of thymic epithelial cells in both cortex and medulla. Dual color fluorescence microscopy, with anti-UM4D4 and antibodies to other thymic epithelial Ag, showed UM4D4 expression on neuroendocrine thymic epithelium but not on thymic fibrous stroma. Thus, UM4D4 is expressed on, and represents an activation pathway for, a subset of thymic T cells. In addition, this determinant, initially identified as a novel T cell activating molecule, is broadly expressed by neuroendocrine thymic epithelium. Although the function of UM4D4 on the thymic epithelial cells is not yet clear, it is possible that UM4D4 represents a pathway for the functional activation of a subset of the thymic epithelium as well as a subset of thymocytes, thus playing a dual role in T cell differentiation.  相似文献   

6.
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.  相似文献   

7.
The most polymorphic residues in the first domain of class I major histocompatibility complex (MHC) molecules are in the 61-69 region. We have chosen the H-2Kb molecule for determining the role of this region in the induction of alloimmune responses. A synthetic peptide, Glu-Arg-Glu-Thr-Gln-Lys-Ala-Lys-Gly corresponding to this region was synthesized. T cells enriched from the lymph nodes of allostrain mice that were previously primed with H-2Kb containing cells or with the synthetic peptide in complete Freund's adjuvant undergo extensive in vitro proliferation in response to the synthetic (61-69)H-2Kb peptide. The response was dependent on the presentation of the (61-69)H-2Kb peptide by the syngeneic antigen-presenting cells and was blocked by anti-class II MHC monoclonal antibodies. This peptide fragment of class I MHC molecule activates only helper/inducer type T cells that are involved in the primary responses but not the effector cytotoxic T cells. When coupled to a carrier protein, (61-69)H-2Kb peptide induced antibodies in allostrain mice that bind to intact H-2Kb molecule. No antibodies or T cell responses could be induced in syngeneic H-2b mice. The antigenic site on the H-2Kb molecule recognized by two H-2Kb-specific monoclonal antibodies B8 X 3 X 24 and Y-25 was also mapped in the 61-69 region by direct binding to the synthetic peptide. Therefore the 61-69 region on the H-2Kb molecule represents the first defined sequence on a class I molecule that is directly involved in the induction of alloimmune responses.  相似文献   

8.
NK1.1+ T cells represent a specialized T cell subset specific for CD1d, a nonclassical MHC class I-restricting element. They are believed to function as regulatory T cells. NK1.1+ T cell development depends on interactions with CD1d molecules presented by hematopoietic cells rather than thymic epithelial cells. NK1.1+ T cells are found in the thymus as well as in peripheral organs such as the liver, spleen, and bone marrow. The site of development of peripheral NK1.1+ T cells is controversial, as is the nature of the CD1d-expressing cell that selects them. With the use of nude mice, thymectomized mice reconstituted with fetal liver cells, and thymus-grafted mice, we provide direct evidence that NK1.1+ T cells in the liver are thymus dependent and can arise in the thymus from fetal liver precursor cells. We show that the class I+ (CD1d+) cell type necessary to select NK1.1+ T cells can originate from TCRalpha-/- precursors but not from TCRbeta-/- precursors, indicating that the selecting cell is a CD4+CD8+ thymocyte. 5-Bromo-2'-deoxyuridine-labeling experiments suggest that the thymic NK1.1+ T cell population arises from proliferating precursor cells, but is a mostly sessile population that turns over very slowly. Since liver NK1.1+ T cells incorporate 5-bromo-2'-deoxyuridine more rapidly than thymic NK1.1+ T cells, it appears that liver NK1.1+ T cells either represent a subset of thymic NK1.1+ T cells or are induced to proliferate after having left the thymus. The results indicate that NK1.1+ T cells, like conventional T cells, arise in the thymus where they are selected by interactions with restricting molecules.  相似文献   

9.
CD4 repopulation can be achieved in T cell-depleted, thymectomized mice grafted with xenogeneic porcine thymus tissue. These CD4 T cells are specifically tolerant of the xenogeneic porcine thymus donor and the recipient, but are positively selected only by porcine MHC. Recent studies suggest that optimal peripheral survival of naive CD4 T cells requires the presence of the same class II MHC in the periphery as that of the thymus in which they were selected. These observations would suggest that T cells selected on porcine thymic MHC would die rapidly in the periphery, where porcine MHC is absent. Persistent CD4 reconstitution achieved in mice grafted with fetal porcine thymus might be due to increased thymic output to compensate for rapid death of T cells in the periphery. Comparison of CD4 T cell decay after removal of porcine or murine thymic grafts ruled out this possibility. No measurable role for peripheral murine class II MHC in maintaining the naive CD4 pool originating in thymic grafts was demonstrable. However, mouse class II MHC supported the conversion to, survival, and/or proliferation of memory-type CD4 cells selected in fetal porcine thymus. Thus, the same MHC as that mediating positive selection in the thymus is not critical for maintenance of the memory CD4 cell pool in the periphery. Our results support the interpretation that xenogeneic thymic transplantation is a feasible strategy to reconstitute CD4 T cells and render recipients tolerant of a xenogeneic donor.  相似文献   

10.
T cells bearing the alpha beta T cell receptor (TCR) can be divided into CD4+8- and CD4-8+ subsets which develop in the thymus from CD4+8+ precursors. The commitment to the CD4 and CD8 lineage depends on the binding of the alpha beta TCR to thymic major histocompatibility complex (MHC) coded class II and class I molecules, respectively. In an instructive model of lineage commitment, the binding of the alpha beta TCR, for instance to class I MHC molecules, would generate a specific signal instructing the CD4+8+ precursors to switch off the expression of the CD4 gene. In a selective model, the initial commitment, i.e. switching off the expression of either the CD4 or the CD8 gene would be a stochastic event which is then followed by a selective step rescuing only CD4+ class II and CD8+ class I specific T cells while CD4+ class I and CD8+ class II specific cells would have a very short lifespan. The selective model predicts that a CD8 transgene which is expressed in all immature and mature T cells should rescue CD4+ class I MHC specific T cells from cell death. We have performed experiments in CD8 transgenic mice which fail to support a selective model and we present data which show that the binding of the alpha beta TCR to thymic class I MHC molecules results in up-regulation of the TCR in the CD4+8+ population. Therefore, these experiments are consistent with an instructive model of lineage commitment.  相似文献   

11.
Positive selection of CD4+ T cells requires that the TCR of a developing thymocyte interact with self MHC class II molecules on thymic cortical epithelium. In contrast, clonal deletion is mediated by dendritic cells and medullary epithelium. We previously generated K14 mice expressing MHC class II only on thymic cortical epithelium. K14 CD4+ T cells were positively, but not negatively, selected and had significant in vitro autoreactivity. Here, we examine the function of these autoreactive CD4+ T cells in more detail. Analysis of a series of K14-derived T hybrids demonstrated that the autoreactive population of CD4+ T cells is phenotypically and functionally diverse. Purified K14 CD4+ T cells transferred into lethally irradiated wild-type B6 mice cause acute graft vs host disease with bone marrow failure. Further, these autoreactive CD4+ T cells cause hypergammaglobulinemia and the production of autoantibodies when transferred into unirradiated wild-type hosts. Thus, positive selection by normal thymic cortical epithelial cells, unopposed by negative selection, produces polyclonal CD4+ T cells that are pathologic.  相似文献   

12.
13.
Athymic (nude) mice were transplanted with cultured thymic fragments from syngeneic, allogeneic, and partially allogeneic (recombinant) mice. Lymphocyte proliferation and cytotoxicity in vitro were measured to assess immunologic reconstitution. Transplanted nude mice were immunocompetent whether donor and recipient were disparate for class I, class II, or both H-2 gene types. Furthermore, allotolerance for thymic H-2 class I antigens was achieved independently of class II antigen allotolerance. Class I antigen tolerance was not broken during lymphocyte responses to unrelated alloantigens, ruling out insufficient help as the tolerance mechanism. Splenocytes, isolated from nude mice transplanted with fully allogeneic or syngeneic thymic fragments and stimulated in vitro with trinitrophenyl-modified cells, displayed H-2-restricted, hapten-specific cytotoxicity. Cytotoxic cells from allotolerant mice were restricted to either host or thymic H-2 antigens, depending on the stimulating cell haplotype. Response levels for thymic and host trinitrophenyl-modified cells were comparable. We have shown that allogeneic thymic epithelium transplanted into adult nude mice can induce allotolerance to class I and II H-2 antigens equally, and permits T lymphocyte interaction with cells bearing thymic donor or host H-2 antigens. Our results are consistent with a model wherein T lymphocyte self-receptors retain their genomic repertoire but can be selectively mutated or expanded by appropriate H-2 antigen presentation by the thymus.  相似文献   

14.
Mutant cells generated in vivo can be eliminated when mutated gene products are presented as altered MHC/peptide complexes and recognized by T cells. Diminished expression of MHC/peptide complexes enables mutant cells to escape recognition by T cells. In the present study, we tested the hypothesis that mutant lymphocytes lacking expression of MHC class I molecules are eliminated by autologous NK cells. In H-2b/k F1 mice, the frequency of H-2Kb-negative T cells was higher than that of H-2Kk-negative T cells. The frequency of H-2K-deficient T cells increased transiently after total body irradiation. During recovery from irradiation, H-2Kk-negative T cells disappeared more rapidly than H-2Kb-negative T cells. The disappearance of H-2K-deficient T cells was inhibited by administration of Ab against asialo-GM1. H-2Kk-negative T cells showed higher sensitivity to autologous NK cells in vitro than H-2Kb/k heterozygous or H-2Kb-negative T cells. Adding syngeneic NK cells to in vitro cultures prevented emergence of mutant cells lacking H-2Kk expression but had little effect on the emergence of mutant cells lacking H-2Kb expression. Results in the H-2b/k F1 strain correspond with the sensitivity of parental H-2-homozygous cells in models of marrow graft rejection. In H-2b/d F1 mice, there was no significant difference between the frequencies of H-2Kb-negative and H-2Kd-negative T cells, although the frequencies of mutant cells were different after radiation exposure among the strains examined. H-2b/d F1 mice also showed rapid disappearance of the mutant T cells after irradiation, and administration of Ab against asialo-GM1 inhibited the disappearance of H-2K-deficient T cells in H-2b/d F1 mice. Our results provide direct evidence that autologous NK cells eliminate mutant cell populations that have lost expression of self-MHC class I molecules.  相似文献   

15.
Although HLA-DQ8 has been implicated as a key determinant of genetic susceptibility to human type 1 diabetes, spontaneous diabetes has been observed in HLA-DQ8 transgenic mice that lack expression of murine MHC class II molecules (mII(-/-)) only when the potent costimulatory molecule, B7.1, is transgenically expressed on pancreatic beta cells. To study the contribution of HLA-DQ8 to the development of diabetes in this model, we crossed RIP-B7.1mII(-/-) mice with a set of transgenic mouse lines that differed in their HLA-DQ8 expression patterns on APC subpopulations, in particular dendritic cells and cortical thymic epithelial cells. Surprisingly, we found that even in the absence of HLA-DQ8 and CD4 T cells, a substantial fraction of the RIP-B7.1mII(-/-) mice developed diabetes. This disease process was remarkable for not only showing insulitis, but also inflammatory destruction of the exocrine pancreas with diffusely up-regulated expression of MHC class I and ICAM-1 molecules. Expression of HLA-DQ8 markedly increased the kinetics and frequency of diabetes, with the most severe disease in the lines with the highest levels of HLA-DQ8 on cortical thymic epithelial cells and the largest numbers of CD4 T cells. However, the adoptive transfer of diabetes was not HLA-DQ8-dependent and disease could be rapidly induced with purified CD8 T cells alone. Expression of B7.1 in the target tissue can thus dramatically alter the cellular and molecular requirements for the development of autoimmunity.  相似文献   

16.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

17.
Mechanisms of cyclophosphamide (CP)-induced tolerance to class I (D) and class II (IE) alloantigens were studied. Transplantation tolerance across H-2D plus IE Ag-barriers has been achieved when B10.Thy-1.1 (Kb,IAb,IE-,Db; Thy-1.1) mice were primed i.v. with 9 x 10(7) spleen cells plus 3 x 10(7) bone marrow cells from B10.A(5R) mice (5R; kb,IAb,IEb,Dd; Thy-1.2) and treated i.p. with 200 mg/kg of CP 2 days later. The tolerant state in the early and the late stage was confirmed by prolonged acceptance of donor-type skin grafts, and in vitro unresponsiveness to donor Ag. In the tolerant B10.Thy-1.1 mice treated with 5R cells 28 days earlier and followed by CP, intrathymic clonal deletion of V beta 11+ T cells reactive to IE-encoded antigens was observed in association with intrathymic mixed chimerism. 5R skin survived, however, even after the clonal deletion of V beta 11+ T cells terminated by 180 days after tolerance induction. V beta 11+ T cells, which reappeared in the periphery of the recipient B10.Thy-1.1 mice bearing 5R skin at this stage, were not capable of proliferating in response to receptor cross-linking with V beta 11-specific mAb. Furthermore, the CTL activity against class I (Dd) alloantigens of spleen cells from these tolerant mice was restored by the addition of IL-2 to MLC. Thus, our experiments provide direct evidence that tolerance to both class I (Dd) and class II (IEb) alloantigens by clonal allergy occurs during the termination of intrathymic clonal deletion. These results clearly show practical hierarchy of the mechanisms of transplantation tolerance.  相似文献   

18.
The fibrosarcoma IC9 is deficient in the expression of the major histocompatibility complex class I genes Kb, Kk, and Dk and expresses only the Db molecule. Because class I deficiency may enable tumor cells to escape the immune response by cytotoxic T lymphocytes, we investigated why the class I genes are not expressed. Expression of the silent class I genes could not be induced, but all known DNA-binding factors specific for class I genes could be detected in nuclear extracts of IC9 cells. After cloning of the silent Kb gene from the IC9 cells and subsequent transfection of this cloned Kb gene into LTK- and IC9 cells, normal Kb antigens were expressed on the cell surface of both cell lines. Digestion of the chromatin of IC9 cells with micrococcal nuclease and DNase I showed a decreased nuclease sensitivity of the silent class I genes in comparison with active genes and the absence of DNase I hypersensitive sites in the promoter region of the silent Dk gene. These findings demonstrate that class I expression is turned off by a cis-acting regulatory mechanism at the level of the chromatin structure.  相似文献   

19.
20.
Previous studies have indicated that the frequency of murine CTL precursors (CTLp) for human class I molecules is one to two orders of magnitude lower than that for murine class I alloantigens, and that this is due to species-specific structural differences between these molecules. Transgenic mice expressing the human class I MHC Ag HLA-A2.1 were used to examine changes in the frequency of class I HLA-specific precursors after T cell differentiation in an HLA-A2.1 positive environment. The HLA-A2.1 gene product was expressed at levels comparable to those of the endogenous H-2Db molecule in thymus, bone marrow, and spleen. By limiting dilution analysis, it was observed that the frequencies of CTLp in transgenic mice responding to the human alloantigens HLA-B7 or HLA-A2.2 were comparable to or lower than those in normal C57BL/6 mice, regardless of whether the Ag was presented on human or murine cells. Thus, expression of a human class I molecule in these animals did not result in an expansion of the number of CTLp specific for other human class I Ag. In addition, the frequency of HLA-A2.1-restricted, influenza specific CTLp was substantially lower than the frequency of H-2b restricted CTLp, indicating a poor utilization of HLA-A2.1 as a restricting element. Finally, the frequencies of CTLp for HLA-A2.1 expressed on syngeneic murine tumor cells were decreased significantly. Thus, expression of HLA-A2.1 in these animals appeared to induced tolerance to this Ag. Interestingly, however, these mice were not tolerant to the HLA-A2.1 molecule expressed on human cells. This indicates that the HLA-A2.1 associated epitopes expressed on murine and human cells differ and suggests that, under these circumstances, HLA-A2.1 acts as a restricting element for human nominal Ag. These results are discussed in the context of current models of T cell repertoire development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号