首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
An interaction of growth cone axonin-1 with the floor-plate NgCAM-related cell adhesion molecule (NrCAM) was shown to play a crucial role in commissural axon guidance across the midline of the spinal cord. We now provide evidence that axonin-1 mediates a guidance signal without promoting axon elongation. In an in vitro assay, commissural axons grew preferentially on stripes coated with a mixture of NrCAM and NgCAM. This preference was abolished in the presence of anti-axonin-1 antibodies without a decrease in neurite length. Consistent with these findings, commissural axons in vivo only fail to extend along the longitudinal axis when both NrCAM and NgCAM interactions, but not when axonin-1 and NrCAM or axonin-1 and NgCAM interactions, are perturbed. Thus, we conclude that axonin-1 is involved in guidance of commissural axons without promoting their growth.  相似文献   

2.
《The Journal of cell biology》1996,135(6):1593-1607
The axonal surface glycoproteins neuronglia cell adhesion molecule (NgCAM) and axonin-1 promote cell-cell adhesion, neurite outgrowth and fasciculation, and are involved in growth cone guidance. A direct binding between NgCAM and axonin-1 has been demonstrated using isolated molecules conjugated to the surface of fluorescent microspheres. By expressing NgCAM and axonin-1 in myeloma cells and performing cell aggregation assays, we found that NgCAM and axonin-1 cannot bind when present on the surface of different cells. In contrast, the cocapping of axonin-1 upon antibody-induced capping of NgCAM on the surface of CV- 1 cells coexpressing NgCAM and axonin-1 and the selective chemical cross-linking of the two molecules in low density cultures of dorsal root ganglia neurons indicated a specific and direct binding of axonin- 1 and Ng-CAM in the plane of the same membrane. Suppression of the axonin-1 translation by antisense oligonucleotides prevented neurite outgrowth in dissociated dorsal root ganglia neurons cultured on an NgCAM substratum, indicating that neurite outgrowth on NgCAM substratum requires axonin-1. Based on these and previous results, which implicated NgCAM as the neuronal receptor involved in neurite outgrowth on NgCAM substratum, we concluded that neurite outgrowth on an NgCAM substratum depends on two essential interactions of growth cone NgCAM: a trans-interaction with substratum NgCAM and a cis-interaction with axonin-1 residing in the same growth cone membrane.  相似文献   

3.
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.  相似文献   

4.
Axonin-1 is an axon-associated cell adhesion molecule with dualistic expression, one form being glycophosphatidylinositol-anchored to the axonal membrane, the other secreted from axons in a soluble form. When presented as a substratum for neuronal cultures it strongly promotes neurite outgrowth from chicken embryonic dorsal root ganglia neurons. In this study, the axon-associated cell adhesion molecule G4, which is identical with Ng-CAM and 8D9, and homologous or closely related to L1 of the mouse and NILE of the rat, was investigated with respect to a receptor function for axonin-1. Using fluorescent microspheres with covalently coupled axonin-1 or L1(G4) at their surface we showed that these proteins bind to each other. Within the sensitivity of this microsphere assay, no interaction of axonin-1 with itself could be detected. Axonin-1-coated microspheres also bound to the neurites of cultured dorsal root ganglia neurons. This interaction was exclusively mediated by L1(G4), as indicated by complete binding suppression by monovalent anti-L1(G4) antibodies. The interaction between neuritic L1(G4) and immobilized axonin-1 was found to mediate the promotion of neurite growth on axonin-1, as evidenced by the virtually complete arrest of neurite outgrowth in the presence of anti-L1(G4) antibodies. Convincing evidence has recently been presented that neurite growth on L1(8D9) is mediated by the homophilic binding of neuritic L1(G4) (1989. Neuron. 2: 1597-1603). Thus, both L1(G4)- and axonin-1-expressing axons may serve as "substrate pathways" for the guidance of following axons expressing L1(G4) into their target area. Conceivably, differences in the concentration of axonin-1 and L1(G4), and/or modulatory influences on their specific binding parameters in leading pathways and following axons could represent elements in the control of axonal pathway selection.  相似文献   

5.
Axonin-1 is a neuronal glycoprotein occurring both as a membrane-bound and a secreted form. Membrane-bound axonin-1 is predominantly located in membranes of developing nerve fiber tracts and has recently been characterized as a cell adhesion molecule; the soluble form is secreted from axons and accumulates in the cerebrospinal fluid and the vitreous fluid of the eye. In the present study, we addressed the question as to whether secreted axonin-1 was released in a functionally competent form and we found that it strongly promotes neurite outgrowth when presented to neurons as an immobilized substratum. Neurite lengths elaborated by embryonic dorsal root ganglia neurons on axonin-1 were similar to those on the established neurite-promoting substrata L1 and laminin. Fab fragments of axonin-1 antibodies completely inhibited neurite growth on axonin-1, but not on other substrata. In soluble form, axonin-1 had an anti-adhesive effect, as revealed by perturbation of neurite fasciculation. In view of their structural similarity, we conclude that secreted and membrane-bound axonin-1 interact with the same growth-promoting neuritic receptor. The fact that secreted axonin-1 is functionally active, together with our previous findings that it is secreted from an internal cellular pool, suggests a functional dualism between membrane-bound and secreted axonin-1 at the site of secretion, which is most likely the growth cone. The secretion of adhesion molecules could represent a powerful and rapidly acting regulatory element of growth cone-neurite interactions in the control of neurite elongation, pathway selection, and possibly target recognition.  相似文献   

6.
Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2(+)-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CG) neurons. beta 1-class integrin ECM receptor heterodimers function less prominently in E8 and not at all in E14 neurite outgrowth on astrocytes. The lack of effect of integrin beta 1 antibodies on E14 neurite outgrowth reflects an apparent loss of integrin function, as assayed by E14 neuronal attachment and process outgrowth on laminin. N-CAM appeared not to be required for neurite outgrowth by either E8 or E14 neurons. Since N-cadherin and integrin beta 1 antibodies together virtually eliminated E8 CG neurite outgrowth on cultured astrocytes, these two neuronal receptors are probably important in regulating axon growth on astroglia in vivo.  相似文献   

7.
The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.  相似文献   

8.
VEGF mediates commissural axon chemoattraction through its receptor Flk1   总被引:3,自引:0,他引:3  
Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons toward the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning toward floor plate tissue, suggesting that additional guidance cues are present. Here we show that the prototypic angiogenic factor VEGF is secreted by the floor plate and is a chemoattractant for commissural axons in vitro and in vivo. Inactivation of Vegf in the floor plate or of its receptor Flk1 in commissural neurons causes axon guidance defects, whereas Flk1 blockade inhibits turning of axons to VEGF in vitro. Similar to Shh and Netrin-1, VEGF-mediated commissural axon guidance requires the activity of Src family kinases. Our results identify VEGF and Flk1 as a novel ligand/receptor pair controlling commissural axon guidance.  相似文献   

9.
Neural cell adhesion molecules of the immunoglobulin/fibronectin type III family on axons have been implicated in promotion of neurite outgrowth, fasciculation, and the mediation of specific cell adhesion. The present study demonstrates that two of these molecules on dorsal root ganglion neurons are associated with distinct protein kinases, axonin-1 with the src-related nonreceptor tyrosine kinase fyn and NgCAM with a casein kinase II-related activity and a serine/ threonine kinase related to S6 kinase. When neurites grew without contacts involving axonin-1 and NgCAM, strong fyn kinase activity was associated with axonin-1, whereas the NgCAM-associated kinase activities were low. Clustering of axonin-1 with NgCAM induced by the formation of cell-cell contacts correlated with a reduction of the axonin-1-associated fyn activity and an increased phosphorylation of NgCAM by the associated casein kinase II-related activity. Thus, axonin-1 and NgCAM trigger distinctive intracellular signals during in vitro differentiation depending on their state of association.  相似文献   

10.
Voltage-dependent sodium (Na(+)) channels are highly concentrated at nodes of Ranvier in myelinated axons and play a key role in promoting rapid and efficient conduction of action potentials by saltatory conduction. The molecular mechanisms that direct their localization to the node are not well understood but are believed to involve contact-dependent signals from myelinating Schwann cells and interactions of Na(+) channels with the cytoskeletal protein, ankyrin G. Two cell adhesion molecules (CAMs) expressed at the axon surface, Nr-CAM and neurofascin, are also linked to ankyrin G and accumulate at early stages of node formation, suggesting that they mediate contact-dependent Schwann cell signals to initiate node development. To examine the potential role of Nr-CAM in this process, we treated myelinating cocultures of DRG (dorsal root ganglion) neurons and Schwann cells with an Nr-CAM-Fc (Nr-Fc) fusion protein. Nr-Fc had no effect on initial axon-Schwann cell interactions, including Schwann cell proliferation, or on the extent of myelination, but it strikingly and specifically inhibited Na(+) channel and ankyrin G accumulation at the node. Nr-Fc bound directly to neurons and clustered and coprecipitated neurofascin expressed on axons. These results provide the first evidence that neurofascin plays a major role in the formation of nodes, possibly via interactions with Nr-CAM.  相似文献   

11.
The neuronal cell adhesion molecule axonin-1 is composed of six immunoglobulin and four fibronectin type III domains. Axonin-1 promotes neurite outgrowth, when presented as a substratum for neurons in vitro, via a neuronal receptor that has been identified as the neuron-glia cell adhesion molecule, NgCAM, based on the blocking effect of polyclonal antibodies directed to NgCAM. Here we report the identification of axonin-1 domains involved in NgCAM binding. NgCAM-conjugated microspheres were tested for binding to COS cells expressing domain deletion mutants of axonin-1. In addition, monoclonal antibodies directed to axonin-1 were assessed for their ability to block the axonin-1-NgCAM interaction, and their epitopes were mapped using the domain deletion mutants. The results suggest that the four amino-terminal immunoglobulin domains of axonin-1 form a domain conglomerate which is necessary and sufficient for NgCAM binding. Surprisingly, NgCAM binding to membrane-bound axonin-1 was increased strongly by deletion of the fifth or sixth immunoglobulin domains of axonin-1. Based on these results and on negative staining electron microscopy, we propose a horseshoe-shaped domain arrangement of axonin-1 that obscures the NgCAM binding site. Neurite outgrowth studies with truncated forms of axonin-1 show that axonin-1 is a neurite outgrowth-promoting substratum in the absence of the NgCAM binding site.  相似文献   

12.
It has been previously described the presence of GnRH receptor in spinal cord neurons of rat embryos and adult rats. However, the functional role of these receptors has not been studied. In this work, the effect of GnRH on neurite outgrowth and cytoskeletal protein expression in cultured spinal cord neurons of rat embryos was analyzed. Specifically, neurofilaments of 68 and 200 kDa by immunoblot assays and spinophilin mRNA expression by RT-PCR. Results show that GnRH stimulates neurite outgrowth in addition to an increase in neurofilaments and spinophilin expression. These findings suggest that GnRH may play a role as neuromodulator in neuronal plasticity and that could be considered as a potential factor for neuronal regeneration in spinal cord injuries.  相似文献   

13.
The potential neuroanatomical specificity of astrocyte influence on neurite outgrowth was studied using an in vitro coculture system in which neurons from embryonic rat spinal cord or hippocampus were grown for 4 days in the presence of, but not in direct contact with, astrocytes derived either from the same region (homotopic coculture) or from different regions (heterotopic coculture) of the rat central nervous system. The results showed that axonal outgrowth was greatly enhanced in heterotopic cocultures in which spinal cord or hippocampal neurons were grown with astrocytes derived from their appropriate CNS target regions. This effect was remarkably specific, because the astroglia harvested from spinal or hippocampal target regions were not effective in promoting axon growth of nonafferent neuronal populations. Dendritic outgrowth was similar under all coculture conditions. These data suggest that diffusible signals, produced by astrocytes, can regulate neurite extension in vitro in a neuroanatomically specific manner and that axons are more sensitive than dendrites to the regional astrocyte environment.  相似文献   

14.
The source of neurite outgrowth in explant cultures of normal adult Apteronotus spinal cord was examined. Explants which contained the central region of spinal cord, including ependyma, showed neurite outgrowth in culture. Explants which did not contain ependyma showed no neurite outgrowth. It is concluded that the ependymal region is necessary for neurite outgrowth in these cultures of adult teleost spinal cord. In addition, our failure to observe axon outgrowth clearly attributable to fluorescently back-labeled electromotor neurons in these cultures suggests that the exuberant neurite outgrowth in vitro is most probably due to cells other than the electromotor neurons. This explant culture system provides a unique opportunity to study neuronal differentiation, regeneration, and neurogenesis in vitro.  相似文献   

15.
The floor plate of the vertebrate nervous system has been implicated in the guidance of commissural axons at the ventral midline. Experiments in chick have also suggested that at earlier stages of development the floor plate induces the differentiation of motor neurons and other neurons of the ventral spinal cord. Here we have examined the development of the spinal cord in a mouse mutant, Danforth's short-tail, in which the floor plate is absent from caudal regions of the neuraxis. In affected regions of the spinal cord, commissural axons exhibited aberrant projection patterns as they reached and crossed the ventral midline. In addition, motor neurons were absent or markedly reduced in number in regions of the spinal cord lacking a floor plate. Our results suggest that the floor plate is indeed an intermediate target in the projection of commissural axons and support the idea that several different mechanisms operate in concert in the guidance of axons to their cellular targets in the developing nervous system. In addition, these experiments suggest that the mechanisms that govern the differentiation of the floor plate and other ventral cell types in the neural tube are common to mammals and lower vertebrates.  相似文献   

16.
A role for Nr-CAM in the patterning of binocular visual pathways   总被引:2,自引:0,他引:2  
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.  相似文献   

17.
Developing axons are guided to their targets by molecular cues in their local environment. Some cues are short-range, deriving from cells along axonal pathways. There is also increasing evidence for longer-range guidance cues, in the form of gradients of diffusible chemoattractant molecules, which originate from restricted populations of target cells. The guidance of developing commissural axons within the spinal cord depends on one of their intermediate cellular targets, the floor plate. We have shown previously that floor plate cells secrete a diffusible factor(s) that can alter the direction of commissural axon growth in vitro. Here we show that the factor is an effective chemoattractant for commissural axons. It can diffuse considerable distances through a collagen gel matrix and through dorsal and ventral neural epithelium in vitro to reorient the growth of virtually all commissural axons. The orientation of axons occurs in the absence of detectable effects on the survival of commissural neurons or on the rate of commissural axon extension. The regionally restricted expression of the factor suggests that it is present in the embryonic spinal cord in a gradient with its high point at the floor plate. These observations support the idea that the guidance of commissural axons to the ventral midline of the spinal cord results in part from the secretion of a chemoattractant by the floor plate.  相似文献   

18.
Ledda F  Paratcha G  Ibáñez CF 《Neuron》2002,36(3):387-401
Immobilized and diffusible molecular cues regulate axon guidance during development. GFRalpha1, a GPI-anchored receptor for GDNF, is expressed as both membrane bound and secreted forms by accessory nerve cells and peripheral targets of developing sensory and sympathetic neurons during the period of target innervation. A relative deficit of GFRalpha1 in developing axons allows exogenous GFRalpha1 to capture GDNF and present it for recognition by axonal c-Ret receptors. Exogenous GFRalpha1 potentiates neurite outgrowth and acts as a long-range directional cue by creating positional information for c-Ret-expressing axons in the presence of a uniform concentration of GDNF. Soluble GFRalpha1 prolongs GDNF-mediated activation of cyclin-dependent kinase 5 (Cdk5), an event required for GFRalpha1-induced neurite outgrowth and axon guidance. Together with GDNF, target-derived GFRalpha1 can function in a non-cell-autonomous fashion as a chemoattractant cue with outgrowth promoting activity for peripheral neurons.  相似文献   

19.
We have isolated a 105-kDa membrane glycoprotein expressed by subsets of developing chick neurons. This glycoprotein, identified by the JC7 monoclonal antibody, is present on the surface of axons and cell bodies of developing spinal motor neurons, dorsal root ganglion sensory neurons, sympathetic and parasympathetic neurons, and a small subset of brain neurons. Late in development the JC7 antigen is expressed at high levels on CNS nonneuronal glial-like cells. When attached to latex beads this glycoprotein can mediate homophilic adhesion and when used as a culture substrate stimulates a highly branched pattern of neurite outgrowth from dorsal root ganglion explants. The JC7 antigen appears to be identical to the SC1, BEN, and DM antigens. Its limited distribution, adhesive qualities, and ability to stimulate neurite outgrowth suggest it may play a role in the selective growth of neural processes during development.  相似文献   

20.
《The Journal of cell biology》1995,131(4):1067-1081
Neural cell adhesion molecules of the immunoglobulin superfamily mediate cellular interactions via homophilic binding to identical molecules and heterophilic binding to other family members or structurally unrelated cell-surface glycoproteins. Here we report on an interaction between axonin-1 and Nr-CAM/Bravo. In search for novel ligands of axonin-1, fluorescent polystyrene microspheres conjugated with axonin-1 were found to bind to peripheral glial cells from dorsal root ganglia. By antibody blockage experiments an axonin-1 receptor on the glial cells was identified as Nr-CAM. The specificity of the interaction was confirmed with binding studies using purified axonin-1 and Nr-CAM. In cultures of dissociated dorsal root ganglia antibodies against axonin-1 and Nr-CAM perturbed the formation of contacts between neurites and peripheral glial cells. Together, these results implicate a binding between axonin-1 of the neuritic and Nr-CAM of the glial cell membrane in the early phase of axon ensheathment in the peripheral nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号