首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SK&F 96365, a novel inhibitor of receptor-mediated calcium entry.   总被引:6,自引:0,他引:6       下载免费PDF全文
A novel inhibitor of receptor-mediated calcium entry (RMCE) is described. SK&F 96365 (1-(beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H- imidazole hydrochloride) is structurally distinct from the known 'calcium antagonists' and shows selectivity in blocking RMCE compared with receptor-mediated internal Ca2+ release. Human platelets, neutrophils and endothelial cells were loaded with the fluorescent Ca2(+)-indicator dyes quin2 or fura-2, in order to measure Ca2+ or Mn2+ entry through RMCE as well as Ca2+ release from internal stores. The IC50 (concn. producing 50% inhibition) for inhibition of RMCE by SK&F 96365 in platelets stimulated with ADP or thrombin was 8.5 microM or 11.7 microM respectively; these concentrations of SK&F 96365 did not affect internal Ca2+ release. Similar effects of SK&F 96365 were observed in suspensions of neutrophils and in single endothelial cells. SK&F 96365 also inhibited agonist-stimulated Mn2+ entry in platelets and neutrophils. The effects of SK&F 96365 were independent of cell type and of agonist, as would be expected for a compound that modulates post-receptor events. Voltage-gated Ca2+ entry in fura-2-loaded GH3 (pituitary) cells and rabbit ear-artery smooth-muscle cells held under voltage-clamp was also inhibited by SK&F 96365; however, the ATP-gated Ca2(+)-permeable channel of rabbit ear-artery smooth-muscle cells was unaffected by SK&F 96365. Thus SK&F 96365 (unlike the 'organic Ca2+ antagonists') shows no selectivity between voltage-gated Ca2+ entry and RMCE, although the lack of effect on ATP-gated channels indicates that it discriminates between different types of RMCE. The effects of SK&F 96365 on functional responses of cells thought to be dependent on Ca2+ entry via RMCE were also studied. Under conditions where platelet aggregation is dependent on stimulated Ca2+ entry via RMCE, the response was blocked by SK&F 96365 with an IC50 of 15.9 microM, which is similar to the IC50 of 8-12 microM observed for inhibition of RMCE. Adhesion and chemotaxis of neutrophils were also inhibited by SK&F 96365. SK&F 96365 is a useful tool to distinguish RMCE from internal Ca2+ release, and to probe the role of RMCE in mediating functional responses of cells. However, SK&F 96365 is not as potent (IC50 around 10 microM) or selective (also inhibits voltage-gated Ca2+ entry) as would be desirable, so caution must be exercised when using this compound.  相似文献   

2.
The effect of SK&F 96365 (1-(beta-[3-(4-methoxyphenyl)propoxyl]-4- methoxyphenethyl)-1H-imidazole hydrochloride), a recently synthesized inhibitor of receptor-mediated calcium entry, was investigated on human hematopoietic cell lines. We found that treatment of the T-cell leukemia line Jurkat with SK&F 96365 inhibited the Ca2+ influx triggered by antibodies against the CD3/TCR complex, while the inositol trisphosphate-dependent Ca2+ release from intracellular stores remained intact. A 50% inhibition of the Ca2+ influx was obtained with 5 microM SK&F 96365, while higher concentrations of the drug blocked the CD3-dependent Ca2+ influx completely. In addition to its blocking of the Ca2+ influx, treatment with SK&F 96365 was found to accumulate mitotic cells. The drug (5 microM) imposed a total cell cycle arrest in G2/M. The mitosis block could be reversed by removal of the inhibitor from the cultures, while elevation of intracellular or extracellular Ca2+ did not restore cell cycle progression. This suggests that the cell cycle block induced by SK&F 96365 is not directly related to its action as an inhibitor of receptor-mediated calcium entry. Our findings indicate that SK&F 96365, in addition to its ability to inhibit receptor-triggered Ca2+ influx, offers a new method for imposing a reversible mitosis arrest in hematopoietic cell lines.  相似文献   

3.
The effects of SK&F 96365, a blocker of the receptor-operated Ca2+ channel, on contractilities and the Na+ channel of mouse diaphragm were studied. SK&F 96365 (10–50 µM) reversibly inhibited twitches, tetanic contractions and muscle and nerve action potentials. The IC50 was 17–24 µM. The inward Na+ current was suppressed and its recovery from inactivations delayed. Crotamine, a peptide toxin that binds to neurotoxin receptor site 3 of the muscle Na+ channel, enhanced the inhibitory effects of SK&F 96365 and reduced the IC50 to about 4 µM. Veratridine had similar effects, although it was less effective than crotamine. On the other hand, the crotamine-induced membrane depolarizations and spontaneous discharges of muscle action potentials were inhibited by SK&F 96365 noncompetitively. The inhibitory effects of tetrodotoxin and tetracaine were additive with those of SK&F 96365 but were enhanced slightly by crotamine. The results suggested that SK&F 96365 acts on a distinct site and blocks the Na+ channel of excitable membranes at a concentration range that inhibits the receptor-operated calcium channel.  相似文献   

4.
The effects of the imidazole compound SK&F 96365 on Ca2+ movements and production of nitric oxide (NO) and von Willebrand factor (vWF) have been investigated in human endothelial cells. Changes in cytosolic Ca2+ concentration ([Ca2+]i) were measured with Fura-2. Real-time production of NO was monitored with a porphyrinic microsensor and the release of vWF with an enzyme-linked immunosorbent assay. Irrespective of the transmembrane Ca2+ gradient, 30 μM SK&F 96365 doubled [Ca2+]i suggesting a Ca2+ release from intracellular stores. The SK&F 96365-induced [Ca2+]i rise was not accompanied by detectable NO and vWF production, while 1 μM thapsigargin enhanced [Ca2+]i 2.5 times, doubled the secretion of vWF and increased the NO production to 10 ± 4 nM (n = 5). Pretreatment with SK&F 96365 prevented thapsigargin from increasing [Ca2+]i, NO production and vWF secretion. To investigate the mechanism by which SK&F 96365 released Ca2+, from internal pools, its effect and that of thapsigargin on the ATP-dependent 45Ca2+, uptake into platelet membrane vesicles were compared. SK&F 96365 as thapsigargin, dose-dependently reduced the initial rate of 45Ca2+ uptake. In conclusion, we demonstrate that, in the absence of Ca2+ entry from the extracellular space, the [Ca2+]i increase elicited by SK&F 96365 or thapsigargin is not sufficient to initiate NO synthesis and vWF secretion. This confirms the important role of Ca2+ influx in endothelial secretion processes.  相似文献   

5.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.  相似文献   

6.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) in Chinese hamster ovarian cells expressing endothelin(B) receptor (CHO-ET(B)R). These channels can be discriminated using the Ca(2+) channel blockers, LOE 908 and SK&F 96365. LOE 908 is a blocker of NSCC-1 and NSCC-2, whereas SK&F 96365 is a blocker of NSCC-2. In this study, we investigated the possible role of phosphoinositide 3-kinase (PI3K) in the ET-1-induced activation of NSCCs in CHO-ET(B)R using wortmannin and LY-294002, inhibitors of PI3K. ET-1-induced Ca(2+) influx was partially inhibited in CHO-ET(B)R pretreated with wortmannin or LY-294002. In contrast, addition of wortmannin or LY-294002 after stimulation with ET-1 did not suppress Ca(2+) influx. The Ca(2+) channels activated by ET-1 in wortmannin- or LY-294002-treated CHO-ET(B)R were sensitive to LOE 908 and resistant to SK&F 96365. In conclusion, NSCC-2 is stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated independently of the PI3K pathway. Moreover, PI3K seems to be required for the initiation of the Ca(2+) entry through NSCC-2 but not for its maintenance.  相似文献   

7.
We have examined the nature of the leukotriene B4 (LTB4) induced steady state intracellular calcium rise [Ca++]i in guinea pig eosinophils and the relationship between LTB4 induced [Ca++]i and superoxide anion (O2-). LTB4 induced a rise in intracellular Ca++ (following a Ca(++)- transient) in a dose dependent manner with an optimal increase around 50-100 nM. Depolarizing concentrations of K+ did not induce [Ca++]i in eosinophils nor did the voltage operated calcium channel inhibitor, nifedipine, inhibit the LTB4 induced Ca++ entry. In contrast, SK&F 96365 a purported receptor operated calcium channel (ROCC) inhibitor, and its parent compound SC 32849, attenuated LTB4 induced [Ca++]i. Five reference anti-asthmatics (ketotifen, formoterol, disodium-cromoglycate, theophylline and budesonide) had no influence on LTB4 induced [Ca++]i. LTB4 also induced O2- generation (a functional response) in a dose dependent manner with optimal effect around 100 nM. However, in contrast to Ca(++)- influx, LTB4 induced O2- generation was not affected by either SK&F 96365 or its analogues or reference anti-asthmatics. The results of this study suggest a) the presence of a non-voltage gated, receptor operated, calcium sequestration process in guinea pig eosinophils, b) that LTB4 induced [Ca++]i and O2- generation are apparently unrelated events in these cells, and c) that standard anti-asthmatics do not have an influence on either LTB4 induced [Ca++]i or O2- generation in these cells.  相似文献   

8.
Bikunin is a Kunitz-type protease inhibitor, acting at the level of tumor invasion and metastasis. The goal of this study was to investigate the effect of bikunin-dependent signal transduction involved in the expression of a plasminogen activator (PA) system and invasion. We report here the following. 1) The human ovarian cancer cell line HRA produced secreted and cell-associated urokinase-type PA (uPA) and PA inhibitor type 1 (PAI-1). The plasma membrane of the cells showed enzymatically active uPA even in the presence of high level of PAI-1, as measured by zymography, Western blot, chromogenic assay, enzyme-linked immunosorbent assay, and Northern blot. 2) HRA cells leading to invasion are induced through up-regulation of uPA expression. 3) HRA cells specifically released transforming growth factor-beta type 1 (TGF-beta1) participating in an autocrine/paracrine regulation of cell invasion. 4) Elimination of endogenous TGF-beta1 could induce change in uPA/PAI-1 expression, which could in turn modify the invasive behavior of the cells. 5) The constitutive expression of TGF-beta1 as well as up-regulation of the PA system observed in HRA cells was inhibited by preinoculation of the cells with bikunin or calcium channel blocker SK&F 96365 but not with nifedipine or verapamil, with an IC(50) of approximately 100 nm for bikunin or approximately 30 microm for SK&F 96365, respectively, as measured by enzyme-linked immunosorbent assay. Bikunin showed no additive effect on SK&F 96365-mediated suppression of TGF-beta1 expression. 6) The ability of TGF-beta1 to elevate free intracellular Ca(2+), followed by activation of Src and ERK, was reduced by preincubation of the cells with bikunin. In conclusion, bikunin could inhibit the constitutive expression of TGF-beta1 and TGF-beta1-mediated, Src- and ERK-dependent, PA system signaling cascade, at least in part, through inhibition of a non-voltage-sensitive calcium channel.  相似文献   

9.
Endothelin (ET)-1 activates twotypes of Ca2+-permeable nonselective cation channels(NSCC-1 and NSCC-2) and a store-operated Ca2+ channel(SOCC) in rabbit internal carotid artery (ICA) vascular smooth musclecells (VSMCs) in addition to the voltage-operated Ca2+channel (VOCC). These channels can be discriminated using the Ca2+ channel blockers SK&F-96365 and LOE-908. SK&F-96365 issensitive to NSCC-2 and SOCC, and LOE-908 is sensitive to NSCC-1 andNSCC-2. On the basis of sensitivity to nifedipine, a specific blocker of the L-type VOCC, VOCCs have a minor role in ET-1-inducedmitogenesis. Both LOE-908 and SK&F-96365 inhibited ET-1-inducedmitogenesis in a concentration-dependent manner, and the combination ofLOE-908 and SK&F-96365 abolished it. The IC50 values ofthese blockers for ET-1-induced mitogenesis correlated well with thoseof the ET-1-induced intracellular free Ca2+concentration responses. These results indicate that the inhibitory action of these blockers on ET-1-induced mitogenesis may bemediated by blockade of NSCC-1, NSCC-2, and SOCC. Collectively,extracellular Ca2+ influx through NSCC-1, NSCC-2, and SOCCmay be essential for ET-1-induced mitogenesis in ICA VSMCs.

  相似文献   

10.
Formation of endothelium-derived relaxing factor (EDRF) strictly correlates with the intracellular free Ca2+ ([Ca2+]i) concentration. We now demonstrate that the histamine-induced rise in [Ca2+]i of human umbilical vein endothelial cells is mostly due to activation of a membrane current which allows Ca2+ entry. This membrane current is sensitive to the novel inhibitor of agonist-induced Ca2+ entry, SK&F 96365, which blocked the histamine-induced sustained rise in [Ca2+]i, as well as 45Ca2+ uptake and membrane currents. Inhibition of the above cellular responses to histamine was accompanied by a considerable reduction of EDRF formation and release. Thus biosynthesis and release of EDRF from human umbilical vein endothelial cells significantly depend on agonist-induced Ca2+ entry involving receptor-operated Ca(2+)-permeable channels which can be blocked by SK&F 96365.  相似文献   

11.
SK&F 87516 is a potent DA1 receptor agonist with demonstrated renal vasodilator activity. SK&F 87516 is the 6-fluoro analog of another DA1 agonist/renal vasodilator agent, fenoldopam. SK&F 87516 is a racemic mixture of two enantiomers, SK&F(R)-87516 and SK&F(S)-87516, and like fenoldopam, the (R)-enantiomer is responsible for the biological activities of the racemate. SK&F(R)-87516 is diuretic in spontaneously hypertensive rats and in dogs, whereas its enantiomer, SK&F(S)-87516 is inactive. SK&F(R)-87516 increases glomerular filtration rate, an effect which may account, in part, for its diuretic activity. Unlike fenoldopam, SK&F(R)-87516 is not associated with acute hypotensive activity, tachycardia, or stimulation of the renin-angiotensin-aldosterone system. The activity differences between SK&F(R)-87516 and fenoldopam are not related to differences in DA1 agonist potency. The activity differences may be due to the differing effects of fluorine and chlorine on the electron distribution in the catechol ring, resulting in an enhanced effect of SK&F(R)-87516 at α2-adrenoceptors. © 1994 Wiley-Liss, Inc.  相似文献   

12.
J Arnt 《Life sciences》1988,42(5):565-574
The dopamine D-1 agonist SK&F 38393 (10 mg/kg) the D-2 agonist (-)-NPA (0.04 mg/kg) and d-amphetamine (1.0 mg/kg) were established as discriminative stimuli versus saline in rats. The stimulus induced by SK&F 38393 was stereoselective, since the R-(+)-, but not the S-(-)-enantiomer was effective. It was mimicked by two partial D-1 agonists with central effects, SK&F 75670 and Lu 24-040, but not by the peripheral agonist fenoldopam. D-2 agonists and d-amphetamine were ineffective. The effect of SK&F 38393 was antagonized by SCH 23390, but not by its inactive enantiomer SCH 23388 or by the D-2 antagonist YM 09151-2. The (-)-NPA stimulus was dependent on postsynaptic D-2 receptors: It was mimicked by quinpirole and pergolide in stimulant dosages, whereas the partial D-2 agonist (-)-3-PPP inhibited the effect of (-)-NPA. The dopamine synthesis inhibitor alpha-methyl-p-tyrosine did not antagonize the effect of (-)-NPA. Likewise, the above-mentioned D-1 agonists produced saline responding. D-amphetamine produced partial substitution to (-)-NPA. The (-)-NPA stimulus was blocked by YM 09151-2, but not by SCH 23390. In d-amphetamine-trained rats, quinpirole, (-)-NPA and pergolide produced generalization, whereas SK&F 38393 was ineffective. Both SCH 23390 and YM 09151-2 antagonized the effect of d-amphetamine. It is concluded that the cues induced by SK&F 38393 and (-)-NPA are mediated by separate D-1 and D-2 sites, whereas both sites contribute to the effect of d-amphetamine.  相似文献   

13.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

14.
Three complementary techniques, differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, have been used to characterise the interactions between dimyristoylphosphatidylcholine (DMPC) model biological membranes and two non-covalent inhibitors of the gastric (H+, K+)-ATPase. DSC, FT-IR and deuterium NMR studies of side-chain perdeuterated DMPC (DMPC-d54) support the prediction, based on physical property measurements, that SK&F 96079 partitions readily into phospholipid bilayers, resulting in a slight but measurable disordering of the lipid hydrocarbon side-chain motion and a concomitant reduction in the co-operativity and onset temperature of the gel to liquid crystalline phase transition. However, FT-IR and deuterium NMR studies show that the bilayer structure remains intact even at high (1:4) compound to lipid molar ratios. Proton (1H) NMR nuclear Overhauser effect determinations in sonicated codispersions reveal details of the membrane bound conformations of SK&F 96079. The structurally related analogue SK&F 96464, also studied by 1H-NMR, can be shown, by interpreting the effects of nitroxide-labelled fatty acid relaxation probes, to adopt a well-defined orientation relative to the bilayer, in contrast to SK&F 96079. This orientation directs the proton at the 5-position of the quinoline ring towards the hydrophobic centre of the bilayer, and the quinoline 8-methoxy group towards the surface and hence the aqueous phase. Molecular modelling has been used to rationalise this orientation in terms of hydrogen bonds between the amino NH group of SK&F 96464 and the sn-1 carbonyl group of DMPC, and between the NH group of the protonated quinoline ring of SK&F 96464 and the DMPC phosphodiester group.  相似文献   

15.
Xiao GN  Guan YY  He H 《Life sciences》2002,70(19):2233-2241
The effects of Cl- channel blockers on endothelin-1 (ET-1)-induced proliferation of rat aortic vascular smooth muscle cells (VSMC) were examined. We found ET-1 concentration-dependently increased cell count and [3H]-thymidine incorporation into VSMC, with EC50 values of 24.8 and 11.4 nM, respectively. Both nifedipine and SK&F96365 inhibited 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC with the maximal inhibitory concentrations of 1 and 10 microM, respectively. DIDS inhibited 10 nM ET-1-induced increase in cell count and [3H]-thymidine incorporation into VSMC in a concentration-dependent manner, whereas other Cl- channel blockers including IAA-94, NPPB, DPC, SITS and furosemide did not produce these effects. 3 microM DIDS reduced 10 nM ET-1-induced sustained increase in cytoplasmic Ca2+ concentration ([Ca2+]) by 52%. Pretreatment of VSMC with 1 microM nifedipine completely inhibited the DIDS effect on 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC and sustained increase in [Ca2+]i, whereas pretreatment with 10 microM SK&F96365 did not completely block these effects of DIDS. DIDS did not affect ET-1-induced Ca2+ release and 30 mM KCl-induced increase in [Ca2+]i. Our data suggest that DIDS-sensitive Cl- channels mediate VSMC proliferation induced by ET-1 by mechanisms related to membrane depolarization and Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

16.
Ca(2+) influx has been shown to be essential for NADPH oxidase activity which is involved in the inflammatory process. Ca(2+) conditions underlying the oxidative response are clearly delineated. Here, we show that store-operated Ca(2+) entry (SOCE) is required at the beginning of NADPH oxidase activation in response to fMLF (N-formyl-L-methionyl-L-leucyl-L-phenylalanine) in neutrophil-like HL-60 cells. When extracellular Ca(2+) is initially removed, early addition of Ca(2+) after stimulation causes a complete restoration of Ca(2+) entry and H(2)O(2) production. Both Ca(2+) entry and H(2)O(2) production are decreased by purported SOCE blockers, 2-aminoethoxydiphenyl borane (2-APB) and SK&F 96365. Endogenously expressed TRPC (transient receptor potential canonical) homologues and Orai1 were investigated for their role in supporting store-operated Ca(2+) channels activity. TRPC1, TRPC6 and Orai1 knock-out by siRNA resulted in the inhibition of Ca(2+) influx and H(2)O(2) production in response to fMLF and thapsigargin while suppression of TRPC3 had no effect on thapsigargin induced-SOCE. 2-APB and SK&F 96365 were able to amplify the reduction of fMLF-stimulated Ca(2+) entry and H(2)O(2) production observed in cells transfected by TRPC3 siRNA. In summary, Ca(2+) influx in HL-60 cells relies on different membrane TRPC channels and Orai1 for allowing NADPH oxidase activation. TRPC3 primarily mediates SOCE-independent pathways and TRPC1, TRPC6 and Orai1 exclusively contribute to SOCE.  相似文献   

17.
Fenoldopam (SK&F 82526) is a potent and selective dopamine DA-1 agonist with demonstrated renal vasodilator and antihypertensive activities in experimental animals and humans. Fenoldopam is a racemic mixture of two enantiomers, SK&F R-82526 and SK&F S-82526. The R-enantiomer is uniformly reported to be more potent than the racemate; in contrast, there is controversy regarding potency of the S-enantiomer. In these studies, the renal and systemic hemodynamic activities of fenoldopam and its enantiomers are characterized in anesthetized, phenoxybenzamine-treated dogs. The results show that the renal and systemic vasodilator activities of fenoldopam are properties of the R-enantiomer; the S-enantiomer is essentially inactive. The renal and systemic vasodilator properties of SK&F R-82526 are antagonized in a competitive fashion by the DA-1 antagonist, SK&F R-83566, but not the DA-2 antagonist, domperidone. Ganglionic blockade did not attenuate renal vasodilation associated with SK&F R-82526. Thus, the mechanism of SK&F R-82526-associated vasodilation, like that previously established for fenoldopam, is via stimulation of postganglionic DA-1 receptors.  相似文献   

18.
The purpose of this study was to demonstrate the involvement of Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) in endothelin-1 (ET-1)-induced transactivation of epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) using the Ca(2+) channel blockers LOE-908 and SK&F-96365 in rabbit internal carotid artery vascular smooth muscle cells. ET-1-induced EGFR PTK transactivation was completely inhibited by AG-1478, which is a specific inhibitor of EGFR PTK. In the absence of extracellular Ca(2+), the magnitude of EGFR PTK transactivation was near the basal level. Based on sensitivity to nifedipine, which is a specific blocker of voltage-operated Ca(2+) channels (VOCCs), VOCCs have minor roles in EGFR PTK transactivation. In contrast, Ca(2+) influx through VICCs plays an important role in EGFR PTK transactivation. Moreover, based on the sensitivity of VICCs to SK&F-96365 and LOE-908, VICCs were shown to consist of two types of Ca(2+)-permeable nonselective cation channels (NSCCs), which are designated NSCC-1 and NSCC-2, and a store-operated Ca(2+) channel. In summary, Ca(2+) influx through VICCs plays an essential role in ET-1-induced EGFR PTK transactivation in rabbit internal carotid artery vascular smooth muscle cells.  相似文献   

19.
Stimulation of (1-3)-beta-glucan receptors results in Ca(2+) influx through receptor-operated channels in alveolar macrophages (AMs), but the mechanism(s) regulating Ca(2+) influx is still undefined. In this study we investigated the role of protein kinase C (PKC) regulation of Ca(2+) influx in the NR8383 AM cell line using the particulate (1-3)-beta-glucan receptor agonist zymosan. PKC inhibition with calphostin C (CC) or bisindolymaleimide I (BSM) significantly reduced zymosan-induced Ca(2+) influx, whereas activation of PKC with phorbol-12-myristate 13-acetate (PMA) or 1, 2-dioctanoyl-sn-glycerol (DOG) mimicked zymosan, inducing a concentration-dependent Ca(2+) influx. This influx was dependent on extracellular Ca(2+) and inhibited by the receptor-operated Ca(2+) channel blocker SK&F96365, indicating that zymosan and PKC activate Ca(2+) influx through a similar pathway. NR8383 AMs expressed one new PKC isoform (delta) and two atypical PKC isoforms (iota and lambda), but conventional PKC isoforms were not present. Stimulation with zymosan resulted in a translocation of PKC-delta from the cytosol to the membrane fraction. Furthermore, inhibition of protein tyrosine kinases (PTKs) with genistein prevented zymosan-stimulated Ca(2+) influx and PKC-delta translocation. These results suggest that PKC-delta plays a critical role in regulating (1-3)-beta-glucan receptor activated Ca(2+) influx in NR8383 AMs and PKC-delta translocation is possibly dependent on PTK activity.  相似文献   

20.
Platelet-activating factor (PAF) is an important participant in the inflammatory process. We studied the regulation of PAF activity by capsaicin in human promyelocytic leukemia HL-60 cells. Capsaicin inhibited PAF-induced superoxide production in a concentration-dependent manner. In addition to PAF, the fMLP- and extracellular ATP-induced superoxide productions were inhibited by capsaicin, whereas PMA-induced superoxide production was not affected. In the PAF-stimulated cytosolic Ca2+ increase, capsaicin inhibited in particular the sustained portion of the raised Ca2+ level without attenuation of the peak height. In the absence of extracellular Ca2+, the PAF-induced Ca2+ elevation was not inhibited by capsaicin because capsaicin only inhibited the Ca2+ influx from the extracellular space. In addition, capsaicin did not affect PAF-induced inositol 1,4,5-trisphosphate production, suggesting that phospholipase C activation by PAF is not affected by capsaicin. Store-operated Ca2+ entry (SOCE) induced by thapsigargin was inhibited by capsaicin in a concentration-dependent manner. This capsaicin effect was also observed on thapsigargin-induced Ba2+ and Mn2+ influx. Furthermore, capsaicin's inhibitory effect on the thapsigargin-induced Ca2+ rise overlapped with that of SK&F96365, an inhibitor of SOCE. Both capsaicin and SK&F96365 also inhibited PAF-induced cytosolic superoxide generation in HL-60 cells differentiated by all-trans-retinoic acid. Our data suggest that capsaicin exerts its anti-inflammatory effect by inhibiting SOCE elicited via PLC activation, which occurs upon PAF activation and results in the subsequent superoxide production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号