首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that DNA strand breaks are the molecular lesions responsible for radiation-induced lethality and that their repair is the basis for the recovery of irradiated cells from sublethal and potentially lethal damage. EM9 is a Chinese hamster ovary cell line that is hypersensitive to killing by X rays and has been reported to have a defect in the rate of rejoining of DNA single-strand breaks. To establish the importance of DNA strand-break repair in cellular recovery from sublethal and potentially lethal X-ray damage, those two parameters, recovery from sublethal and potentially lethal damage, were studied in EM9 cells as well as in EM9's parental repair-proficient strain, AA8. As previously reported, EM9 is the more radiosensitive cell line, having a D0 of 0.98 Gy compared to a D0 of 1.56 Gy for AA8 cells. DNA alkaline elution studies suggest that EM9 cells repair DNA single-strand breaks at a slower rate than AA8 cells. Neutral elution analysis suggests that EM9 cells also repair DNA double-strand breaks more slowly than AA8 cells. All of these data are consistent with the hypothesis that DNA strand-break ligation is defective in EM9 cells and that this defect accounts for increased radiosensitivity. The kinetics and magnitude of recovery from sublethal and potentially lethal damage, however, were similar for both EM9 and AA8 cells. Six-hour recovery ratios for sublethal damage repair were found to be 2.47 for AA8 cells and 1.31 for EM9 cells. Twenty-four-hour recovery ratios for potentially lethal damage repair were 3.2 for AA8 and 3.3 for EM9 cells. Both measurements were made at approximately equitoxic doses. Thus, the defect in EM9 cells that confers radiosensitivity and affects DNA strand-break rejoining does not affect sublethal damage repair or potentially lethal damage repair.  相似文献   

2.
Gamma-ray induction of DNA strand breaks and their repair was analysed in the diploid yeast strain D7 (Saccharomyces cerevisiae) by means of the alkaline step elution technique. A dose-dependent increase of DNA strand breakage was observed in the dose range 25-2000 Gy corresponding to 100 and 0.01 per cent survival. When, after exposure to gamma-irradiation, the cells were incubated for 2 h in liquid growth medium, the elution profiles reached the pattern of unirradiated controls, thus indicating the restoration of cellular DNA due to repair. The alkaline step elution analysis is found to be a useful and reproducible technique for studying the induction of DNA strand breaks and repair in yeast. In comparison with other current methods, such as alkaline sucrose gradients and DNA unwinding, this method appears to be more rapid, versatile and easier to handle.  相似文献   

3.
Certain DNA base lesions induced by ionizing radiation or oxidative stress are repaired faster from the transcribed strand of active genes compared to the genome overall. In this study, it was investigated whether radiation-induced DNA strand breaks are preferentially repaired in active genes compared to the genome as a whole in CHO cells. The alkaline unwinding technique coupled to slot-blot hybridization with specific DNA probes was used to study the induction and repair of DNA strand breaks in defined DNA sequences. Results using this technique showed a linear dose response for the formation of radiation-induced DNA strand breaks in the dihydrofolate reductase (DHFR) gene. Furthermore, the half-life of radiation-induced strand breaks was less than 5 min in the DHFR gene, in the ribosomal genes, and in the genome as a whole. These results suggest that the repair of DNA strand breaks is fast and uniform in the genome of mammalian cells.  相似文献   

4.
Radiation induced damage, i.e., the induction of DNA strand breaks, was studied on the level of single, unlabeled cells. DNA strand breaks were determined by direct partial alkaline unwinding in intact cell nuclei followed by staining with acridine orange, a development of a proposal first described by B. Rydberg (Int J Radiat Biol 46:521-527, 1984). The ratio of green fluorescence (double-stranded DNA) to red fluorescence (single-stranded DNA) in single cells was taken as a measure of DNA strand breaks. CHO-K1 and M3-1 cells irradiated with X-rays show a dose dependent induction of DNA strand breaks. Incubation at 37 degrees C after irradiation leads to repair of breaks. A repair halflife of about 10-11 min can be determined. Cell cycle specific differences in the induction of DNA strand breaks or repair behavior are not detectable at the resolution achieved so far. This new method offers two major advantages: the resolution of DNA damage and repair on the level of single cells and no need for labeling, thereby allowing for DNA damage and repair to be assessed in biopsy material from tumor patients.  相似文献   

5.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

6.
Single-strand breaks are a major form of DNA damage caused by ionizing radiation, and measurement of strand breaks has long been used as an index of overall cellular DNA damage. Most assays for DNA single-strand breaks in cells rely on measuring fractionated DNA samples following alkali denaturation. Quantification is usually achieved by prelabeling cells with radioactive DNA precursors; however, this is not possible in the situation of nondividing cells or freshly isolated tissue. It has previously been demonstrated that the alkali unwinding assay of DNA strand breaks can be quantified by blotting the recovered DNA on nylon membranes and hybridizing with radiolabeled sequence-specific probes. We report here improvements to the technique, which include hot alkali denaturation of DNA samples prior to blotting and the use of carrier DNA that is non-complementary to the radiolabeled probe. Our method allows both single- and double-stranded DNA to be quantified with the same efficiency, thereby improving the sensitivity and reproducibility of the assay, and allows calibration for determination of absolute levels of DNA strand breaks in cells. We also used this method to assay radiation-induced DNA strand breaks in freshly isolated human leukocytes and found them to have a strand break induction rate of 1815 strand breaks/cell/Gy.  相似文献   

7.
Cultured human fibroblasts from healthy donors were incubated for 30 min with nine different benzo[a]pyrene (BP) derivatives in the presence or absence of liver microsomes from 3-methylcholanthrene treated rats. The induction and repair of DNA strand breaks were analysed by alkaline unwinding and separation of double and single stranded DNA (SS-DNA) by hydroxylapatite chromatography immediately after the incubation or at various times after the treatment. In the absence of microsomes DNA stand breaks were detected in fibroblasts exposed to 30 microM of each of the six BP phenols (1-, 2-, 3-, 7-, 9- or 11-OH-BP) and the three BP dihydrodiols (BP-4,5-, BP-7,8- or BP-9,10-dihydrodiol). After removal of the BP derivatives from the medium the DNA strand breaks disappeared within 24 h. alpha-Naphthoflavone (alpha-NF) caused a decrease in the induction of strand breaks by 1-, 3- and 9-OH-BP but did not affect the induction of strand breaks in cells exposed to BP-7,8-dihydrodiol. In the presence of microsomes DNA strand breaks were found after exposure to 30 microM of each of the six BP phenols (1-, 2-, 3-, 7-, 9- or 11-OH-BP), as well as BP-7,8- and 9,10-dihydrodiol. In contrast BP-4,5-dihydrodiol did not induce strand breaks under these conditions. The induction of strand breaks by BP-7,8-dihydrodiol was enhanced in the presence of cytosine-1-beta-D-arabinofuranoside (AraC). In all cases the DNA strand breaks had disappeared 24 h after removal of the BP derivatives and microsomes except after treatment with BP-7,8-dihydrodiol.  相似文献   

8.
The aim of this pilot study was to assess whether a compound of the β-carbonyl-1,4-dihydropyridine series (AV-153 or sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate), which has high efficiency in stimulating DNA repair, can simultaneously modulate apoptosis in human cells. Peripheral blood lymphocytes of healthy donors were used in this study. DNA strand-break rejoining was assessed with the alkaline comet assay after a 3-h incubation of lymphocytes in the presence of a wide range of concentrations of AV-153 (10−10–10−5 M). Apoptotic and micronucleated (MN) cells were scored in phytohaemagglutinin-stimulated lymphocytes after a 72-h incubation with AV-153, using the standard cytokinesis-blocked micronucleus test. The study revealed dual effects of AV-153 on cellular defense systems against endogenously generated DNA damage: the compound per se simultaneously reduces DNA strand breaks and stimulates apoptosis, with a maximal efficiency of 76% and 42%, respectively; in contrast, after genotoxic stress (2 Gy of gamma-radiation) AV-153 reduces DNA strand breaks, the number of MN cells and apoptotic cells in a similar dose-dependent manner. A maximal efficiency of 67% was found for reduction of DNA strand breaks, while for MN cells and apoptotic cells the efficiencies were, respectively, 47% and 44%. While limited in number, these preliminary studies show the direct correlation between the efficiency of AV-153 in reduction of radiation-induced DNA breaks and MN cells on one side, and in reduction of apoptosis on the other. It suggests that the major target of the compound's action on genotoxic stress is DNA repair, followed by reduction of the number of damaged cells entering apoptosis.  相似文献   

9.
 本文将反向交变电场和六角形电极电场这两种脉冲电场凝胶电泳技术应用于X线照射小鼠乳癌细胞SR-1所致DNA双链断裂的检测,在本实验条件下,用这种电泳都能检测到低至1.5Gy照射所产生的DNA双链断裂,并且用六角形电极电场电泳获得了DNA双链断裂程度与照射剂量之间的良好线性关系,此外,还用此方法观察了不同浓度自由基清除剂DMSO对X线照射SR-1细胞所致DNA双链断裂的保护作用,结果进一步证实本方法的可靠性。  相似文献   

10.
Using the in vitro human diploid fibroblast model, we tested theories of aging which hypothesize that either accumulation of DNA damage or decreased DNA repair capacity is causally related to cellular senescence. Between population doubling level (PDL) 32 and 71, fetal lung-derived normal diploid human fibroblasts (IMR 90) were assayed for both DNA single-strand breaks (SSBs, spontaneous and induced by 6 Gy) and DNA double-strand breaks (DSBs, spontaneous and induced by 100 Gy). After gamma-irradiation cells were kept on ice unless undergoing repair incubation at 37 degrees C for 7.5-120 min or 18-24 h. To assay DNA strand breaks we used the filter elution technique in conjunction with a fluorometric determination of DNA which is not biased in favor of proliferating aging cells as are radioactive labelling methods. We found no change with in vitro age in the accumulation of spontaneous SSBs or DSBs, nor in the kinetics or completeness of DNA strand rejoining after gamma-irradiation. Cells at varying PDLs rejoined approx. 90% of SSBs and DSBs after 60 min repair incubation and 100% after 18-24 h repair incubation. We conclude that aging and senescence as measured by proliferative lifespan in IMR 90 cells are neither accompanied nor caused by accumulation of DNA strand breaks or by diminished capacity to rejoin gamma-radiation-induced SSBs or DSBs in DNA.  相似文献   

11.
Strand breaks were detected in the DNA of Ehrlich ascites cells as well as in HeLa S3 cells directly after 1-5 hr at 43-45 degrees C by the use of the unwinding in high salt/hydroxylapatite method. The strand breaks found could not be attributed to the decay of incorporated tritiated thymidine. When the cells were incubated at 37 degrees C after the hyperthermic treatments, the amount of strand breaks formed remained at a constant level. Hyperthermia inhibited the repair of "radiation-induced" strand breaks. The repair curves obtained this way show a heat-dose-dependent decrease of the relative weight of the fast component of repair. Similar repair curves of "radiation-induced" strand breaks could be obtained by mixing heat inactivated and vital control cells prior to irradiation. In the latter case, however, the DNA repair was inhibited to a greater extent for identical levels of cell survival. The possible underlying molecular mechanisms are discussed.  相似文献   

12.
The DNA unwinding technique has been used to measure the induction and repair of DNA strand breaks by X-rays in the X-ray-sensitive (xrs 5) mutant and its parent CHO K1 line of Chinese hamster cells. Results show that frequency of induction of DNA strand breaks was the same for both cell lines. The repair of single-strand breaks was found to be slightly slower in xrs 5 over the first 20 min after X-ray exposure, but the level of repair of ssb reached after an incubation of 1h following X-ray exposure in xrs 5 was the same as in CHO K1. Our results also show that the rate of repair of DNA double-strand breaks in xrs 5 cells was clearly slower than that in CHO K1, supporting the conclusion of Kemp et al. (1984) who used the neutral elution technique, that xrs 5 is defective in the repair pathway of DNA double-strand breaks.  相似文献   

13.
14.
Summary The kinetics of DNA denaturation in alkaline solution (pH 12.2) was studied in CHO cells using the alkaline unwinding technique. After X-ray doses of 0, 3, 5 and 9 Gy, the kinetics of alkaline denaturation was found to be independent of the number of induced strand breaks confirming earlier studies on this subject. In addition, the denaturation kinetics measured in cells exposed to 9 Gy were found to be identical for different repair intervals. This result shows that for the three different classes of DNA strand breaks described previously (Dikomey and Franzke 1986a) strand separation in alkaline solution occurs at the same kinetics. As a consequence, the relationship between the numbers of strand breaks and the fraction of remaining double-stranded DNA is considered the same for the three different classes.  相似文献   

15.
A mathematical model of DNA strand breaks postirradiation repair and the methodology allowing to differentiate the mechanism of inhibition of DNA strand breaks recovery after combined actions of ionizing radiation and hyperthermia have been described in this paper. Using this model and the results published by other authors for DNA strand breaks of Ehrlich ascites cells, there have been obtained the data showing that the portion of DNA-damages that the cell incapable to recover after consecutive thermoradiation action was risen with an increase in thermal load under insignificant change of repair constant. It means the mechanism of DNA strand breaks recovery inhibition is realized in a greater extent through the formation of irreversible damages but not through the damage of repair process itself.  相似文献   

16.
The effect of ferulic acid was studied on γ-radiation-induced relaxation of plasmid pBR322 DNA and induction of DNA strand breaks in peripheral blood leukocytes and bone marrow cells of mice exposed to whole body γ-radiation. Presence of 0.5 mM ferulic acid significantly inhibited the disappearance of supercoiled (ccc) plasmid pBR322 with a dose modifying factor (DMF) of 2.0. Intraperitoneal administration of different amounts (50, 75 and 100 mg/kg body weight) of ferulic acid 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strands breaks in murine peripheral blood leukocytes and bone marrow cells as evidenced from comet assay. The dose-dependent protection was more pronounced in bone marrow cells than in the blood leukocytes. It was observed that there was a time-dependent disappearance of radiation induced strand breaks in blood leukocytes (as evidenced from comet parameters) following whole body radiation exposure commensuration with DNA repair. Administration of 50 mg/kg body weight of ferulic acid after whole body irradiation of mice resulted disappearance of DNA strand breaks at a faster rate compared to irradiated controls, suggesting enhanced DNA repair in ferulic acid treated animals. (Mol Cell Biochem xxx: 209–217, 2005)  相似文献   

17.
We have measured rejoining kinetics of chromosome breaks using a modified cell fusion-based premature chromosome condensation (PCC) technique in confluent cultures of normal human fibroblasts irradiated at low doses of X-rays. In order to enhance the sensitivity of the fusion-based PCC assay, we added a DNA double strand break (DSB) repair inhibitor wortmannin during the incubation period for PCC/fusion process resulting in a significantly higher yield of G1-type chromosome breaks. The initial number of chromosome breaks (without repair) gave a linear dose response with about 10 breaks per cell per Gy which is about two times higher than the value with the conventional G1-type PCC method. The chromosome rejoining kinetics at 0.5 and 2.0 Gy X-rays reveal a bi-phasic curve with both a fast and a slow component. The fast component (0-30 min) is nearly identical for both doses, but the slow component for 2 Gy kinetics is much slower than that for 0.5 Gy, indicating that the process occurring during this period may be crucial for the ultimate fate of irradiated cells. The chromosome rejoining kinetics obtained here is similar to that of other methods of detecting DNA DSB repair such as the gammaH2AX assay. Our chromosome repair assay is useful for evaluating the accuracy of other assays measuring DNA DSB repair at doses equal or less than 0.5 Gy of ionizing radiation.  相似文献   

18.
It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined gamma-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose response increased as a linear function of gamma-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair.  相似文献   

19.
In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is induced by exposure to X rays. This repair synthesis may be amplified and easily measured through inhibition of DNA ligase action. In an effort to learn more of the relationship between X-ray-induced strand breaks in cellular DNA and the extent of this repair synthesis, experiments designed to compare the influence of radioprotectors on both strand-break production and repair synthesis have been carried out. The results show that cysteamine, sodium formate, and glycerol not only protect against strand breaks but also reduce DNA polymerase I-directed repair synthesis. However, I-, an efficient hydroxyl radical scavenger, is not as effective a protective agent against strand breaks and does not measurably affect repair synthesis in our system.  相似文献   

20.
Chinese hamster V79 cells grown for 20 h in suspension culture form small clusters of cells (spheroids) which are more resistant to killing by ionizing radiation than V79 cells grown as monolayers. This resistance appears to be due to the greater capacity of cells grown in contact to repair radiation damage. Attempts to relate this "contact effect" to differences in DNA susceptibility or DNA repair capacity have provided conflicting results. Two techniques, alkaline sucrose gradient sedimentation and alkaline elution, show no difference in the amounts of radiation-induced DNA single-strand breakage or its repair between suspension or monolayer cells. However, using the alkali-unwinding assay, the rate of DNA unwinding is much slower for suspension cells than for monolayer cells. Interestingly, a decrease in salt concentration or in pH of the unwinding solution eliminates these differences in DNA unwinding kinetics. A fourth assay, sedimentation of nucleoids on neutral sucrose gradients, also shows a significant decrease in radiation damage produced in suspension compared to monolayer cultures. It is believed that this assay measures differences in DNA conformation (supercoiling) as well as differences in DNA strand breakage. We conclude from these four assays that the same number of DNA strand breaks/Gy is produced in monolayer and spheroid cells. However, changes in DNA conformation or packaging occur when cells are grown as spheroids, and these changes are responsible for reducing DNA damage by ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号