共查询到20条相似文献,搜索用时 15 毫秒
1.
A beta-tubulin mutation selectively uncouples nuclear division and cytokinesis in Tetrahymena thermophila 下载免费PDF全文
The ciliated protozoan Tetrahymena thermophila contains two distinct nuclei within a single cell-the mitotic micronucleus and the amitotic macronucleus. Although microtubules are required for proper division of both nuclei, macronuclear chromosomes lack centromeres and the role of microtubules in macronuclear division has not been established. Here we describe nuclear division defects in cells expressing a mutant beta-tubulin allele that confers hypersensitivity to the microtubule-stabilizing drug paclitaxel. Macronuclear division is profoundly affected by the btu1-1 (K350M) mutation, producing cells with widely variable DNA contents, including cells that lack macronuclei entirely. Protein expressed by the btu1-1 allele is dominant over wild-type protein expressed by the BTU2 locus. Normal macronuclear division is restored when the btu1-1 allele is inactivated by targeted disruption or expressed as a truncated protein. Immunofluorescence studies reveal elongated microtubular structures that surround macronuclei that fail to migrate to the cleavage furrows. In contrast, other cytoplasmic microtubule-dependent processes, such as cytokinesis, cortical patterning, and oral apparatus assembly, appear to be unaffected in the mutant. Micronuclear division is also perturbed in the K350M mutant, producing nuclei with elongated early-anaphase spindle configurations that persist well after the initiation of cytokinesis. The K350M mutation affects tubulin dynamics, as the macronuclear division defect is exacerbated by three treatments that promote microtubule polymerization: (i) elevated temperatures, (ii) sublethal concentrations of paclitaxel, and (iii) high concentrations of dimethyl sulfoxide. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) with 3-methyladenine or wortmannin also induces amacronucleate cell formation in a btu1-1-dependent manner. Conversely, the myosin light chain kinase inhibitor ML-7 has no effect on nuclear division in the btu1-1 mutant strain. These findings provide new insights into microtubule dynamics and link the evolutionarily conserved PI 3-kinase signaling pathway to nuclear migration and/or division in Tetrahymena. 相似文献
2.
Expression of the actin-binding protein profilin was disrupted in the ciliate Tetrahymena thermophila by an antisense ribosome method. In cells with the antisense disruption no profilin protein was detected. Cultures of cells with the antisense disruption could be maintained, indicating that profilin was not essential for cytokinesis or vegetative growth. Disruption of the expression of profilin resulted in many cells that were large and abnormally shaped. Formation of multiple micronuclei, which divide mitotically, was observed in cells with a single macronucleus, indicating a defect in early cytokinesis. Some cells with the antisense disruption contained multiple macronuclei, which in Tetrahymena may indicate a function late in cytokinesis. The lack of profilin also affected cytokinesis in the cells that could divide. Normal-sized and normal-shaped cells with the antisense disruption took significantly longer to divide than control cell types. The profilin disruption revealed two new processes in which profilin functions. In cells lacking profilin, micronuclei were not positioned at their normal site on the surface of the macronucleus and phagocytosis was defective. The defect in phagocytosis appeared to be due to disruption of the formation of oral apparatuses (stomatogenesis) and a possible failure in the internalization of phagocytic vacuoles. 相似文献
3.
The mechanism responsible for final cell separation at the end of cytokinesis is currently unknown. Knockout strains of the ciliate, Tetrahymena thermophila lacking the kinesin-II homologous molecular motors, Kin1p and Kin2p are paralyzed due to their complete loss of cilia and undergo frequent cytokinesis failures. Observations of live dividing cells revealed that cleavage furrow ingression is normal in kinesin-II double knockout cells until the final stage of cell separation (Brown et al., 1999). During closer inspection of dividing cells using video differential interference contrast microscopy, we found that wild-type cells undergo an extremely complex motile behavior near the end of cytokinesis. This process, which we have named rotokinesis, appears to facilitate the physical separation of daughter cells. Here we present recent work onTetrahymena rotokinesis, and review studies in other organisms which suggest that the use of cell locomotion in the completion of cytokinesis is a general phenomenon of motile cell types. 相似文献
4.
5.
Nilsson JR 《The Journal of eukaryotic microbiology》1999,46(1):24-33
Sodium orthovanadate at 0.1-5.0 mM affected cell proliferation of Tetrahymena in a dose-dependent manner. At 1 h the cell increment was 76-12% of the control (100%), but after lag periods in 1-5 mM the growth rate remained at 76% of control in 0.1 mM vanadate and at 64-61% of control in 0.2-5.0 mM vanadate. Endocytosis was affected in both a time- and dose-dependent manner; an increasing number of cells did not form vacuoles. Cell motility increased initially in 0.1 mM vanadate but decreased later as it did in 0.5-2.0 mM vanadate where the proportion of immobile cells increased with time. Cell divisions occurred at all concentrations but macronuclear elongation was disturbed and subsequent cytokinesis resulted in daughter cells containing the entire G2 macronucleus, a large or small portion of it, or no nucleus at all. Moreover, odd cell shapes appeared with time. The size of the cell and nucleus increased but there was great variation with disturbed cytoplasm/nucleus ratios. Treated cells had dilated rough endoplasmic reticulum that included dense material, presumed to be vanadate, which was not seen in control cells. Scant amounts of dense material were found in dense granules, small vacuoles, and abundantly in contractile vacuoles. It is argued that interference with proper microtubular function is the main effect of vanadate. 相似文献
6.
Vegetative cells were subjected to electrofusion and the resulting heteropolar doublets were then mated to normal single cells and followed throughout conjugation using cytological and genetic techniques. The unique cyto-geometry created in a heteropolar doublet--a continuous cytoplasmic compartment bounded by two anterior poles and sharing a fused posterior pole at midbody, and the potential for two conjugal exchange junctions--resulted in instructive perturbations of nuclear behavior. Our results indicate that the course of nuclear development is strongly dependent on the cortical geometry of conjugating cells. Specifically, 1) continuation of development after meiosis requires an established conjugal junction; 2) after pronuclear exchange, pronuclei are subjected to attractive forces; and 3) products of the second postzygotic division are actively positioned near the posterior region of the cell cortex where they develop into micronuclei. 相似文献
7.
Tetrahymena contains a micronucleus and a macronucleus. The micronucleus divides with typical mitosis, while the macronucleus divides amitotically. Although the mechanism responsible for macronuclear division was previously unknown, we clarified the organization of microtubules during macronuclear division. The macronuclear microtubules dynamically changed their distribution in an organized way throughout the macronuclear division. The macronuclear microtubules and the cytoplasmic microtubules cooperatively carried out the macronuclear division. When the micronuclear division was finished, p85 appeared at the presumptive division plane prior to the cytokinesis. The p85 directly interacted with calmodulin in a Ca(2+)-dependent manner, and p85 and CaM colocalized to the division furrow during cytokinesis. Moreover, the Ca(2+)/CaM inhibitor, W7, inhibited the direct interaction between p85 and CaM, the localization of both proteins to the division plane, and the formation of the division furrow. Thus, Ca(2+)/CaM and p85 have important roles in initiation and progression of cytokinesis in Tetrahymena. 相似文献
8.
Targeted gene disruption was used to investigate the function of MYO1, an unconventional myosin gene in Tetrahymena thermophila. Phenotypic analysis of a transformed strain that lacked a functional MYO1 gene was conducted at both 20 degrees C and 35 degrees C. At either temperature the delta MYO1 strain had a smaller cytoplasm/nucleus ratio than wild type. At 20 degrees C, delta MYO1 populations had a longer doubling time than wild type, lower saturation density, and a reduced rate of food vacuole formation. However, at 35 degrees C, these characteristics were comparable to wild type. Although micronuclear division and cytokinesis appeared normal in delta MYO1 cells, failure of the macronucleus to elongate properly resulted in unequal segregation of macronuclear DNA in cells maintained at either 20 degrees C or 35 degrees C. 相似文献
9.
10.
Tetsuya Takeda Iain M. Robinson Matthew M. Savoian John R. Griffiths Anthony D. Whetton Harvey T. McMahon David M. Glover 《Open biology》2013,3(8)
Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery. 相似文献
11.
ERIC S. COLE MARK A. VIRTUE KATHLEEN R. STUART 《The Journal of eukaryotic microbiology》2001,48(3):266-279
Electric shock can create parabiotic fusions of living Tetrahymena cells. In this study, cells were mated and successful pairs were electrofused with either vegetatively growing cells or other mating pairs. In particular, we electrofused pairs from normal [diploid x diploid] matings with vegetatively dividing cells in G- or M-phase of the cell cycle. We also fused [diploid x diploid] conjugants with mating pairs involving an aneuploid partner [diploid x "star"], which typically undergo an abortive conjugal pathway termed genomic exclusion. Using such parabiotic fusions we identified and characterized two developmentally critical landmarks: 1) the "abort" signal, which is initiated in pairs with nuclear defects (this first becomes evident soon after the completion of Meiosis I or the beginning of Meiosis II); and 2) the "terminal commitment point", a developmental stage in normal [diploid x diploid] pairs after which conjugation no longer responds to a parabiotically transmitted abort signal (this correlates with the onset of the second postzygotic nuclear division). Finally we demonstrate that a conjugal-arrest-activity varies with the vegetative cell cycle, reaching its highest level of activity during M-phase and dropping just after cytokinesis. 相似文献
12.
Xia L Hai B Gao Y Burnette D Thazhath R Duan J Bré MH Levilliers N Gorovsky MA Gaertig J 《The Journal of cell biology》2000,149(5):1097-1106
We analyzed the role of tubulin polyglycylation in Tetrahymena thermophila using in vivo mutagenesis and immunochemical analysis with modification-specific antibodies. Three and five polyglycylation sites were identified at glutamic acids near the COOH termini of alpha- and beta-tubulin, respectively. Mutants lacking all polyglycylation sites on alpha-tubulin have normal phenotype, whereas similar sites on beta-tubulin are essential. A viable mutant with three mutated sites in beta-tubulin showed reduced tubulin glycylation, slow growth and motility, and defects in cytokinesis. Cells in which all five polyglycylation sites on beta-tubulin were mutated were viable if they were cotransformed with an alpha-tubulin gene whose COOH terminus was replaced by the wild-type COOH terminus of beta-tubulin. In this double mutant, beta-tubulin lacked detectable polyglycylation, while the alpha-beta tubulin chimera was hyperglycylated compared with alpha-tubulin in wild-type cells. Thus, the essential function of polyglycylation of the COOH terminus of beta-tubulin can be transferred to alpha-tubulin, indicating it is the total amount of polyglycylation on both alpha- and beta-tubulin that is essential for survival. 相似文献
13.
Starved Tetrahymena thermophila cells underwent synchronous cell division 2 h after a mechanical stimulation. The macronucleus showed no obvious increase in DNA content before the cell division in the starvation medium, and the DNA content was decreased after the cell division. On the other hand, when the starved cells were given nutrient-supplied medium immediately after the mechanical stimulation, cell division was delayed for 3 h. This period was almost the same as that for G1 cells in the stationary culture to first division after transfer to fresh nutrient medium. These results suggest that the mechanical stimulation induces an early division of starved cells, skipping the macronuclear S-phase with the starved cells probably becoming trapped in G1. Starved cells that had finished division soon formed mating pairs with cells of the opposite type. These observations lead us to propose that cell division in starvation conditions may be necessary to reduce macronuclear DNA content prior to the mating of T. thermophila. 相似文献
14.
Cytokinesis in many eukaryotes requires an actomyosin contractile ring. Here, we show that in fission yeast the myosin-II heavy chain Myo2 initially accumulates at the division site via its COOH-terminal 134 amino acids independently of F-actin. The COOH-terminal region can access to the division site at early G2, whereas intact Myo2 does so at early mitosis. Ser1444 in the Myo2 COOH-terminal region is a phosphorylation site that is dephosphorylated during early mitosis. Myo2 S1444A prematurely accumulates at the future division site and promotes formation of an F-actin ring even during interphase. The accumulation of Myo2 requires the anillin homologue Mid1 that functions in proper ring placement. Myo2 interacts with Mid1 in cell lysates, and this interaction is inhibited by an S1444D mutation in Myo2. Our results suggest that dephosphorylation of Myo2 liberates the COOH-terminal region from an intramolecular inhibition. Subsequently, dephosphorylated Myo2 is anchored by Mid1 at the medial cortex and promotes the ring assembly in cooperation with F-actin. 相似文献
15.
The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, suggesting that common molecular mechanisms may govern aspects of eukaryotic cell division. Recent advances in the assembly and placement of the contractile ring are discussed. In particular, major findings have been made in the characterization of myosins in cytokinesis, and in how the cell division site may be positioned by the nucleus. 相似文献
16.
鉴定得到嗜热四膜虫13个含有完整保守结构域的hsp70基因,对其中5个高度相似且无内含子的hsp70基因进行表达分析。在37、39和41℃热激条件下,实时荧光定量PCR结果表明,hsp70-2基因对热激响应最敏感。在四膜虫生长、饥饿和接合生殖这3种生理或发育状态下,Microarray结果显示,hsp70-4基因恒定且高表达;在热激条件下,hsp70-4基因的表达水平随着温度的升高而略微增加,证实hsp70-4基因为热休克相关蛋白hsc70基因;克隆的hsp70-4基因全长2208bp,开放阅读框长1959bp,编码653个氨基酸。Microarray结果提示,hsp70-3可能参与四膜虫饥饿早期(0~12h)的耐受和接合生殖后期(6~10h)的新大小核形成,老大核凋亡等事件;hsp70-5可能参与四膜虫饥饿晚期(12~15h)的耐受和接合生殖早期(0~6h)的小核减数分裂、小核交换和原核(pronuclear)融合事件。Blast2GO分析表明,与hsp70-3和hsp70-5共表达的基因分别参与不同的生物学过程,进一步反映了hsp70-3和hsp70-5这两个基因在功能上是存在差异的。 相似文献
17.
Autophagy is an evolutionarily conserved mechanism for the degradation of cellular components, but its role in enucleation during differentiation has not been established. Tetrahymena thermophila is a unicellular eukaryote with two functionally distinct nuclei, the somatic (macro-) and the germ line (micro-) nuclei. These nuclei are produced during sexual reproduction (conjugation), which involves differentiation and selective degradation of several specific nuclei. To examine the role of autophagy in nuclear degradation, we studied the function of two ATG8 genes in Tetrahymena. Through fluorescent protein tagging, we found that both proteins are targeted to degrading nuclei at specific stages, with some enrichment on the nuclear periphery, suggesting the formation of autophagosomes surrounding these nuclei. In addition, ATG8 knockout mutant cells showed a pronounced delay in nuclear degradation without apparently preventing the completion of other developmental events. This evidence provided direct support for a critical role for autophagy in programmed nuclear degradation. The results also showed differential roles for two ATG8 genes, with ATG8-65 playing a more significant role in starvation than ATG8-2, although both are important in nuclear degradation. 相似文献
18.
Michael Plamann 《Journal of genetics》1996,75(3):351-360
Nuclear division, nuclear distribution and cytokinesis are fundamental processes of all eukaryotic organisms, and filamentous
fungi, specificallyAspergillus nidulans andNeurospora crassa, have provided sophisticated genetic systems for identification of the genes required for these processes. Mutational analyses
have led to identification of novel proteins that have subsequently been found to be conserved components required for nuclear-specific
functions. Formation of the mitotic spindle inA. nidulans has been shown to be dependent onγ-tubulin, a central element of all microtubule organizing centres, and two kinesin-related proteins. Analysis ofA. nidulans mitotic mutants has led to identification of two important cell-cycle regulators, NIMA and BIME. The NIMA kinase is required
for entry into mitosis, and BIME has recently been identified as a subunit of an anaphase-promoting complex that targets cyclins
for proteolysis. The microtubule-associated motor protein cytoplasmic dynein has been discovered in bothA. nidulans andN. crassa, and it has been proposed that it provides motive force for the distribution of nuclei within hyphae. Future studies of nucleus-specific
processes in filamentous fungi are likely not only to identify additional novel structural and regulatory proteins, but also
lead to an understanding of how the processes of nuclear division, nuclear distribution and septation are altered to meet
the developmental needs of the organism. 相似文献
19.
Ran是细胞内的一种具有GTP酶活性的功能蛋白,可以调节染色体稳定性、细胞核组建以及核质运输等多种细胞进程.Ran结合蛋白1(Ran-binding protein 1, Rbp1p )是Ran的必要调控因子,促进Ran-GTP水解为Ran-GDP.本研究从嗜热四膜虫大核基因组中鉴定出1个保守的Ran结合蛋白基因RBP1(TTHERM_00158040, http://www.ciliate.org).实时荧光定量PCR表明,RBP1在四膜虫营养生长和有性生殖过程中都有表达,且在有性生殖过程中表达水平提高.免疫荧光定位表明,在营养 生长期Rbp1p定位于细胞质中.过表达RBP1或敲减RBP1后,细胞生长速率下降,大核的无丝分裂异常,细胞分裂末期产生了无大核的异常细胞,同时过表达RBP1导致了多小核的产生.结果表明,Rbp1p影响四膜虫细胞核的分裂进程,它的正常表达对细胞增殖过程起到重要的调节作用. 相似文献
20.
真核细胞中染色体浓缩调节因子(regulator of chromosome condensation 1, RCC1)是 RanGTPase 唯一的鸟嘌呤核苷酸交换因子. 染色质结合的RCC1和RanGTPase相互作用,催化细胞核内RanGDP向RanGTP的转化,进而调控了核质间的定向运送、有丝分裂期纺锤体的组装以及核膜的形成. 本实验从原生生物嗜热四膜虫大核基因组中鉴定了1个新的RCC1(TTHERM_00530380)基因. 该基因全长2 541 bp,包含2个内含子序列,开放阅读框为2 181 bp,编码726个氨基酸. 实时荧光定量PCR表明,RCC1在四膜虫营养生长、饥饿以及有性生殖时期都有表达,且在有性生殖转录水平达到最高. 免疫荧光定位分析表明, HA RCC1在营养生长和饥饿时期,定位于大核和小核中|在有性生殖时期,定位于亲本大核、减数分裂的小核、新生成的大核和凋亡的大核中. 过表达RCC1导致大核的无丝分裂异常, 细胞增殖变慢,最终产生无大核的后代细胞. 敲减RCC1导致了多小核的产生. 结果表明,RCC1参与调控了四膜虫细胞核的分裂, RCC1的正常表达对核分裂以及细胞增殖起到重要的调控作用. 相似文献