首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of DNA adducts by the covalent binding of genotoxic chemicals to DNA represents a valuable marker for assessing exposure to carcinogens but as yet the role of DNA adducts as a biomarker of carcinogenic susceptibility still needs to be clearly ascertained. To address this question an animal study was instigated using mice (SWR (high), BALB/c (intermediate) and C57BL/6J (low)) varying in their susceptibility to lung carcinogenesis. Groups of animals from each strain were dosed with a single intraperitoneal injection of saline or N -nitrosodiethylamine (NDEA) at 15 or 90 mg kg-1 body weight. Lung and liver tissues were removed at different time points following dosing. Further groups of mice dosed with the same regime had urine samples collected 24 h post dosing and were then left up to 18 months to allow for the development of tumours. Immunoslot-blot analysis was used for the determination of N-7 ethylguanine (N-7EtG) and O6 ethylguanine (O6EtG) adduct levels in the DNA from the tissues and gas chromatography-mass spectrometry (GC-MS) was used to determine N-3 ethyladenine (N-3EtA) adduct levels in the urine samples. Levels of alkyltransferase (ATase) were also determined in the tissues. The results showed that the DNA adduct levels and persistence were similar across the three strains of mice following dosing with 15 and 90 mg kg-1 NDEA. High levels of adducts were observed in the urine of the BALB/c strain, implying an increased metabolic or repair capacity in this strain. However there were no differences in the levels of ATase in the lung and liver of the three strains of mice following dosing with 15 mg kg-1 NDEA. The incidence of tumours in C57BL/6J mice was lower compared with the other two strains and showed a dose dependent increase. The results from this study show that the differences in susceptibility to lung carcinogenesis between the three strains of mice do not appear to be linked to the formation of the two adducts detected. These results imply that dosing with NDEA resulted in toxicity which may have led to cell death and induction of tumours by compensatory cell proliferation. Although these results do not allow decisive conclusions to be drawn concerning the relationship between total levels of DNA adducts and differences in carcinogenic susceptibility for the three strains of mice it is clear that the increased presence of a DNA adduct in the target tissue increases the likelihood of tumour development.  相似文献   

2.
Methods for determining the differential susceptibility of human organs to DNA damage have not yet been explored to any large extent due to technical constraints. The development of comprehensive analytical approaches by which to detect intertissue variations in DNA damage susceptibility may advance our understanding of the roles of DNA adducts in cancer etiology and as exposure biomarkers at least. A strategy designed for the detection and comparison of multiple DNA adducts from different tissue samples was applied to assess esophageal and peripherally- and centrally-located lung tissue DNA obtained from the same person. This adductome approach utilized LC/ESI-MS/MS analysis methods designed to detect the neutral loss of 2′-deoxyribose from positively ionized 2′-deoxynucleoside adducts transmitting the [M+H]+ > [M+H−116]+ transition over 374 transitions. In the final analyses, adductome maps were produced which facilitated the visualization of putative DNA adducts and their relative levels of occurrence and allowed for comprehensive comparisons between samples, including a calf thymus DNA negative control. The largest putative adducts were distributed similarly across the samples, however, differences in the relative amounts of putative adducts in lung and esophagus tissue were also revealed. The largest-occurring lung tissue DNA putative adducts were 90% similar (n = 50), while putative adducts in esophagus tissue DNA were shown to be 80 and 84% similar to central and peripheral lung tissue DNA respectively. Seven DNA adducts, N2-ethyl-2′-deoxyguanosine (N2-ethyl-dG), 1,N6-etheno-2′-deoxyadenosine (dA), -S- and -R-methyl-γ-hydroxy-1,N2-propano-2′-deoxyguanosine (1,N2-PdG1, 1,N2-PdG2), 3-(2′-deoxyribosyl)-5,6,7,8-tetrahydro-8-hydroxy-pyrimido[1,2-a]purine-(3H)-one (8-OH-PdG) and the two stereoisomers of 3-(2′-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxypyrimido[1,2-a]purine-(3H)-one (6-OH-PdG) were unambiguously detected in all tissue DNA samples by comparison to authentic adduct standards and stable isotope dilution and their identities were matched to putative adducts detected in the adductome maps.  相似文献   

3.
J.B. Guttenplan   《Mutation research》1990,233(1-2):177-187
The relationships between DNA alkylation, DNA repair and mutagenesis by N-nitroso compounds in Salmonella were examined. DNA adducts formed by treatment of the bacteria with N-nitroso compounds were monitored. Critical to the study was establishing which adducts led to mutations. Two methods were employed. In one, correlations in the dose-responses for adducts and mutagenesis were sought. For instance O6-methyl- and -ethyl-guanine, in contrast to other adducts, exhibited thresholds in their accumulation in Salmonella DNA, and mutagenesis at GC base pairs also exhibited the same threshold, suggesting a dependence of mutagenesis on the O6-alkyguanines. In the second method, mutagenesis induced by different mutagens with overlapping adduct spectra was compared. For example, EMS and ENU generate similar ratios of adenine adducts, but only ENU produces thymine adducts, and only ENU induced AT-GC and AT-CG base changes. These observations suggested that ethylthymines led to these mutations. Furthermore, it was found that these mutations were largely dependent on the presence of the plasmid, pKM101, indicating that error-prone repair activity contributes importantly in their processing to mutations. When DNA adducts by N-nitrosopyrrolidine were examined it was found that only one major adduct was detected in an excision-repair-deficient strain, and that this adduct was not present in a repair-proficient strain. Mutagenesis was also greatly reduced in the proficient strain, suggesting that mutagenesis was dependent on this adduct. From the relationships between premutagenic adducts levels adducts. This calculation assumed an average distribution of adducts and mutations and required knowledge of the target size and the types of mutations that could lead to phenotypic changes. For the unrepaired O6-methyl- and -ethyl-guanines, and the O-ethylthymines the mutational efficiencies were high (ca. 30–70%), but for the N-nitrosopyrrolidine adduct it was low (ca. 1%). Initial studies were carried out on the mutational specificities of two higher homologue N-nitroso compounds (the N-nitroso-N-propyl- and N-butyl-nitroguanidines) in uvrB/pKM101 strains. This class of nitroso compounds is known to form similar DNA adducts as ENU. Their specificities were similar to that of N-nitroso-N-ethylurea at a high dose except the fraction of mutations at AT base pairs was reduced. The fraction of GC-CG transversions was although low, increased. The mutational specificities of N-nitroso-N-methylurea and N-nitrosopyrrolidine were significantly different from the specificity of ENU as would be expected from their different adduct distributions.  相似文献   

4.
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by 32P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole-1 deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg-1 day-1 respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole-1 dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg-1 day-1 respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg-1 day-1 exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole-1 dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg-1 day-1, approaching environmentally relevant levels has not been previously reported, and indicates that the 32P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.  相似文献   

5.
Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22–50 years) working outdoors in the downtown area of Prague and in matched “unexposed” controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by 32P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32–55 μg/m3, PM2.5 27–38 μg/m3, c-PAHs 18–22 ng/m3; personal exposure to c-PAHs: 9.7 ng/m3 versus 5.8 ng/m3 (P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 ± 0.28 adducts/108 nucleotides versus 0.82 ± 0.23 adducts/108 nucleotides, P = 0.065), whereas the level of the B[a]P-“like” adduct was significantly higher in exposed group (0.122 ± 0.036 adducts/108 nucleotides versus 0.099 ± 0.035 adducts/108 nucleotides, P = 0.003). A significant difference in both the total (P < 0.05) and the B[a]P-“like” DNA adducts (P < 0.01) between smokers and nonsmokers within both groups was observed. A significant positive association between DNA adduct and cotinine levels (r = 0.368, P < 0.001) and negative association between DNA adduct and vitamin C levels (r = −0.290, P = 0.004) was found. The results of multivariate regression analysis showed smoking, vitamin C, polymorphisms of XPD repair gene in exon 23 and GSTM1 gene as significant predictors for total DNA adduct levels. Exposure to ambient air pollution, smoking, and polymorphisms of XPD repair gene in exon 6 were significant predictors for B[a]P-“like” DNA adduct. To sum up, this study suggests that polymorphisms of DNA repair genes involved in nucleotide excision repair may modify aromatic DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from c-PAHs exposure.  相似文献   

6.
The mutations and DNA adducts produced by the environmental pollutant 2-nitropyrene were examined in Salmonella typhimurium tester strains. 2-Nitropyrene was a stronger mutagen than its extensively studied structural isomer 1-nitropyrene in strains TA96, TA97, TA98, TA100, TA102, TA104 and TA1538. Both 1- and 2-nitropyrene were essentially inactive in TA1535. The mutagenicity of 1- and 2-nitropyrene in TA98 was much higher than in TA98NR and the activity of these compounds in TA100 was much higher than in TA100NR. While 1-nitropyrene exhibited similar mutagenicity in strains TA98 and TA98/1,8-DNP6, the mutagenicity of 2-nitropyrene in TA98/1,8-DNP6 was much lower than in TA98. Analysis of DNA from TA96 and TA104 incubated with 2-nitropyrene indicated the presence of two adducts, N-(deoxyguanosin-8-yl)-2-aminopyrene and N-deoxyadenosin-8-yl)-2-aminopyrene. The results suggest that 2-nitropyrene is metabolized by bacterial nitroreductase(s) to N-hydroxy-2-aminopyrene, and possibly by activation to a highly mutagenic O-acetoxy ester. DNA adduct formation with deoxyguanosine and deoxyadenosine correlates with the mutagenicity of 2-nitropyrene in tester strains possessing both G:C and A:T mutational targets.  相似文献   

7.
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations.  相似文献   

8.
After intracellular in vitro exposure to the mutagenic and carcinogenic N-nitroso compounds N-methyl-N-nitrosourea (MeNU) or N-ethyl-N-nitrosourea (EtNU), respectively, the average relative amounts of the premutational lesion O6-alkylguanine represent about 6% and 8% of all alkylation products formed in genomic DNA. At the level of individual DNA molecules gunine-O6 alkylation does nor occur at random; rather, the probability of a substitution reaction at the nucleophilic O6 atom is influenced by nucleotide sequence, DNA conformation, and chromatin structure. In the present study, 5 different double-stranded polydeoxynucleotides and 15 double-stranded oligodeoxynucleotides (24-mers) were reacted with MeNU or EtNU in vitro under standardized conditions. Using a competitive radioimmunoassay in conjunction with an anti-(O6-2′-deoxyguanosine) monoclonal antibody, the frequency of guanine-O6 alkylation was found to be strongly dependent on the nature of the nucleotides flanking guanine on the 5 and 3′ sides. Thus, a 5′ neighboring guanine, followed by 5 adenine and 5′ cytosine, provided an up to 10-fold more ‘permissive’ condition for O6-alkylation of the central guanine than a 5′ thymine (with a 5-methylcytocine in the 5′ position being only slightly less inhibitory). Thymine and cytosine were more ‘permissive’ when placed 3′ in comparison with their affects in the 5′ flanking position.  相似文献   

9.
Depending on ionic strength, chromatin can assume either a condensed, supranucleosomal conformation or the form of an extended nucleosomal fiber. Using sedimentation velocity analysis, both types of structures could be identified in chromatin prepared from cell nuclei of fetal rat brain. When the ionic strength was reduced from 60 to 10 mM NaCl, the average S-value of a defined chromatin fiber fraction (12–15 nucleosomes in size) decreased dramatically from 72 S to 55 S, reflecting the unfolding of condensed chromatin to an extended conformation. Correspondingly, the average S-value of histone H1-depleted chromatin (Ch) was 54 S at 60 mM NaCl and did not change significantly at lower NaCl concentrations. Ch contains only the core histones and is, therefore, relaxed into an extended form.

Using a monoclonal antibody (ER-6) specific for O6-ethyldeoxyguanosine, we studied the influence of chromatin conformation on the formation of O6-ethylguanine (O6-EtGua) in the DNA of chromatin exposed to the carcinogen N-ethyl-N-nitrosourea (EtNU; 1 mg/ml, 37°C, 20 min) in vitro. When the NaCl concentration during incubations with EtNU was varied between 0 and 100 mM, the amount of O6-EtGua formed in the DNA of complete chromatin (Ch+) was highest at 0 mM NaCl, then decreased exponentially with increasing ionic strength, and remained approximately constant at values 50 mM NaCl. A similar dependence on ionic strength was found for the formation of O6-EtGua in the DNA of Ch and in native DNA. The frequency of O6-EtGua was highest in native DNA, followed by the DNA of Ch, and lowest in the DNA of Ch+. At each salt concentration, the O6-EtGua content of Ch+ DNA relative to the corresponding values for Ch DNA and native DNA, remained unchanged (0.70±0.03 S.D. and 0.42±0.03 S.D., respectively). In addition to O6-EtGua, the formation of 7-ethylguanine (7-EtGua; major groove of the DNA double helix) and 3-ethyladenine (3-EtAde; minor groove) was analysed after exposure to [1-14C]EtNU. 7-EtGua was the most frequently formed ethylation product, followed by O6-EtGua and 3-EtAde. As in the case of O6-EtGua, the frequencies of 7-EtGua and 3-EtAde were dependent on ionic strength, and decreased in the order: native DNA, Ch DNA, and Ch+ DNA. Compared with native DNA (relative value, 100), the frequencies of O6-EtGua and 7-EtGua in DNA were reduced to a similar extent in Ch (rel. values 62.1 and 61.2, respectively) and in Ch+ (rel. values for both products, 43.9). The corresponding values for 3-EtAde were slightly lower in both types of chromatin fibers (rel. values 56.7 and 39.5, respectively). Thus, the core histones generally protect DNA from ethylation by EtNU. While nucleophilic sites in the major groove and in the base-pairing region of the DNA double helix are protected to about the same degree, the N-3 position of adenine in the minor groove is slightly less accessible to the ethyldiazonium ion generated from EtNU. In all cases the highest degree of protection is obtained when histone H1 is present in chromatin.  相似文献   


10.
Aromatic amines are important intermediates in industrial manufacturing. They are used in a large number of products, such as pesticides, dyes, plastics and pharmaceuticals. The parent arylamines can be metabolically released from these arylamine-based compounds and form DNA and protein adducts after N-oxidation to N-hydroxy arylamines. Aromatic amine derivatives, including the industrial intermediates acetoacetanilide, acetoacet-m-xylidide and N-ethylaniline, were examined for their ability to form Hb adducts in rats as potential biomarkers of exposure. The haemoglobin binding indices (HBI=binding [mmol mol-1 Hb]/dose [mmol kg-1 body weight]) of the arylamines were determined 24 h after oral administration to female Wistar rats. The precipitated haemoglobin was dissolved in 0.1 M sodium hydroxide in the presence of internal standards. After hexane extraction the released arylamines were analysed by gas chromatography-mass spectrometry (GC-MS). For aniline released from acetoacetanilide an HBI of 15 and for 2,4-dimethylaniline released from acetoacet-m-xylidide an HBI of 0.129 were determined. The HBIof aniline released from N-ethylaniline was 45.  相似文献   

11.
Acellular assay of calf thymus DNA ± rat liver microsomal S9 fraction coupled with 32P-postlabelling was used to study the genotoxic potential of organic compounds bound onto PM10 particles collected in three European cities—Prague (CZ), Kosice (SK) and Sofia (BG) during summer and winter periods. B[a]P alone induced DNA adduct levels ranging from 4.8 to 768 adducts/108 nucleotides in the concentration dependent manner. However, a mixture of 8 c-PAHs with equimolar doses of B[a]P induced 3.7–757 adducts/108 nucleotides, thus suggesting the inhibition of DNA adduct forming activity by interaction among various PAHs. Comparison of DNA adduct levels induced by various EOMs indicates higher variability among seasons than among localities. DNA adduct levels for Prague collection site varied from 19 to 166 adducts/108 nucleotides, for Kosice from 22 to 85 and for Sofia from 6 to 144 adducts/108 nucleotides. Bioactivation with S9 microsomal fraction caused 2- to 7-fold increase in DNA adduct levels compared to −S9 samples, suggesting a crucial role of indirectly acting genotoxic EOM components, such as PAHs. We have demonstrated for the first time a significant positive correlation between B[a]P content in EOMs and total DNA adduct levels detected in the EOM treated samples (R = 0.83; p = 0.04). These results suggest that B[a]P content in EOM is an important factor for the total genotoxic potential of EOM and/or B[a]P is a good indicator of the presence of other genotoxic compounds causing DNA adducts. Even stronger correlation between the content of genotoxic compounds in EOMs and total DNA adduct levels detected (R = 0.94; p = 0.005) was found when eight c-PAHs were taken into the consideration. Our findings support a hypothesis that a relatively limited number of EOM components is responsible for a major part of its genotoxicity detectable as DNA adducts by 32P-postlabelling.  相似文献   

12.
13C nuclear magnetic resonance spectroscopy (13C n.m.r.) was used to determine the pH titration parameters for the N-terminal N,N-[13C]dimethylamino and N,N-[13C]monomethylamino groups of glycophorins AM and AN, and some 28 related glycoproteins, glycopeptides and peptides. The results show that glycosylation of the Ser and Thr residues at positions 2, 3 and 4 of the glycophorins have a pronounced effect on the titration parameters. Substitution of amino acids 4 and 5 in the glycophorin sequence appears to minimally affect our titration parameters. Internal hydrogen-bonding involving the N-terminal Ser residue may explain some of the unusual pH titration results observed for glycophorin AM.  相似文献   

13.
DNA adducts associated with oxidative stress are believed to involve the formation of endogenous reactive species generated by oxidative damage and lipid peroxidation. Although these adducts have been reported in several human tissues by different laboratories, a comparison of the levels of these adducts in the same tissue samples has not been carried out. In this study, we isolated DNA from the pancreas of 15 smokers and 15 non-smokers, and measured the levels of 1,N6-etheno(2′-deoxy)guanosine (edA), 3,N4-etheno(2′-deoxy)cytidine (edC), 8-oxo-2′-deoxyguanosine (8-oxo-dG), and pyrimido[1,2-]purin-10(3H)-one (m1G). Using the same DNA, the glutathione S-transferase (GST) M1, GSTT1, and NAD(P)H quinone reductase-1 (NQO1) genotypes were determined in order to assess the role of their gene products in modulating adduct levels through their involvement in detoxification of lipid peroxidation products and redox cycling, respectively. The highest adduct levels observed were for m1G, followed by 8-oxo-dG, edA, and edC, but there were no differences in adduct levels between smokers and non-smokers and no correlation with the age, sex or body mass index of the subject. Moreover, there was no correlation in adduct levels between edA and eC, or between edA or edC and m1G or 8-oxo-dG. However, there was a significant correlation (r=0.76; p<0.01) between the levels of 8-oxo-dG and m1G in human pancreas DNA. Neither GSTM1 nor NQO1 genotypes were associated with differences in any of the adduct levels. Although the sample set was limited, the data suggest that endogenous DNA adduct formation in human pancreas is not clearly derived from cigarette smoking or from (NQO1)-mediated redox cycling. Further, it appears that neither GSTM1 nor GSTT1 appreciably protects against endogenous adduct formation. Together with the lack of correlation between m1G and edA or edC, these data indicate that the malondialdehyde derived from lipid peroxidation may not contribute significantly to m1G adduct formation. On the other hand, the apparent correlation between m1G and 8-oxo-dG and their comparable high levels are consistent with the hypothesis that m1G is formed primarily by reaction of DNA with a base propenal, which, like 8-oxo-dG, is thought to be derived from hydroxyl radical attack on the DNA.  相似文献   

14.
There is increasing evidence that alkylating agent exposure may increase large bowel cancer risk and factors which either alter such exposure or its effects may modify risk. Hence, in a cross-sectional study of 78 patients with colorectal disease, we have examined whether (i) metabolic genotypes (GSTT1, GSTM1, CYP2D6, CYP2E1) are associated with O(6)-methyldeoxyguanosine (O(6)-MedG) levels, O(6)-alkylguanine-DNA alkyltransferase (ATase) activity or K-ras mutations, and (ii) there was an association between ATase activity and O(6)-MedG levels. Patients with colon tumours and who were homozygous GSTT1(*)2 genotype carriers were more likely than patients who expressed GSTT1 to have their DNA alkylated (83 versus 32%, P=0.03) and to have higher O(6)-MedG levels (0.178+/-0.374 versus 0.016+/-0.023 micromol O(6)-MedG/mol dG, P=0.04) in normal, but not tumour, DNA. No such association was observed between the GSTT1 genotype and the frequency of DNA alkylation or O(6)-MedG levels in patients with benign colon disease or rectal tumours. Patients with colon tumours or benign colon disease who were CYP2D6-poor metabolisers had higher ATase activity in normal tissue than patients who were CYP2D6 extensive metabolisers or CYP2D6 heterozygotes. Patients with the CYP2E1 Dra cd genotype were less likely to have a K-ras mutation: of 55 patients with the wild-type CYP2E1 genotype (dd), 23 had K-ras mutations, whereas none of the 7 individuals with cd genotype had a K-ras mutation (P=0.04). No other associations were observed between GSTT1, GSTM1, CYP2D6 and CYP2E1 Pst genotypes and adduct levels, ATase activity or mutational status. O(6)-MedG levels were not associated with ATase activity in either normal or tumour tissue. However, in 15 patients for whom both normal and tumour DNA contained detectable O(6)-MedG levels, there was a strong positive association between the normal DNA/tumour DNA adduct ratio and the normal tissue/tumour tissue ATase ratio (r(2)=0.66, P=0.001). These results indicate that host factors can affect levels both of the biologically effective dose arising from methylating agent exposure and of a susceptibility factor, the DNA repair phenotype.  相似文献   

15.
The pro-mutagenicity of chemically-induced methylation of DNA at the O6 position of dexoyguanosine was studied in cultured adult rat liver epithelial cells. To modify the level of O6-methyldeoxyguanosine (O6-medGuo) resulting from exposure to an alkylating agent, partial depletion of the O6-alkylguanine-DNA alkyltransferase (AGT) repair system was produced by pretreatment of ARL 18 cells with a non-toxic dose of exogenous O6-methylguanine (O6-meG). Exposure of cells to 0.6 mM O6-meG for 4 h depleted AGT activity by about 40%. Intact and pretreated cells were exposed to a range of doses of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by measurement of 6-thioguanine-resistant mutants. The mutagenicity of MNNG was dose dependent and was greater in O6-meG pretreated cultures than in intact cultures. Immunoslot blot measurement of O6-medGuo employing a mouse monoclonal antibody demonstrated that MNNG produced O[su6-medGuo and that the intact liver cells were efficient in eliminating this lesion from their DNA. Since depletion of AGT would be expected to affect the rate of elimination of only O6-medGuo, it is concluded that this lesion is highly pro-mutagenic.  相似文献   

16.
The carcinogenicity of many alkylating agents is derived from their ability to form persistent DNA adducts that induce mutations. This paper presents and validates methodology, based on LC with tandem mass spectrometry, for the separate or concurrent quantification by isotope dilution of O(6)-methyl-2'-deoxyguanosine (O(6)Me-dG) and O(6)-ethyl-2'-deoxyguanosine (O(6)Et-dG) DNA adducts. The limits of quantification were estimated to be < or =0.2 adducts/10(8) nucleotides for either adduct. This sensitivity permitted evaluation of adduct levels in livers from separate groups of untreated adult C57BL/6N/Tk(+/-) and C57BL/6N X Sv129 mice (undetectable to 5.5+/-6.7 O(6)Me-dG/10(8) nucleotides; undetectable to 0.04 O(6)Et-dG/10(8) nucleotides). Treatment of adult C57BL/6N/Tk(+/-) mice with equimolar doses (342micromol/kg body weight) of N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea produced adduct levels in liver of 1700+/-80 O(6)Me-dG/10(8) nucleotides and 260+/-60 O(6)Et-dG/10(8) nucleotides, respectively, when assessed 4h after dosing. These methods should be useful for evaluations of DNA adducts in relation to cellular processes that modify carcinogenic and toxicological responses in experimental animals and humans.  相似文献   

17.
The effect of genetic polymorphism of DNA repair enzyme on the DNA adduct levels was evaluated in this study. We explored the relationship between polymorphism in the nucleotide excision repair enzyme XPD and DNA adduct levels in lymphocytes. Lymphocyte DNA adducts were measured by a 32  相似文献   

18.
The methodology applied for DNA adducts in humans has become more reliable in recent years, allowing to detect even background carcinogenic adduct levels in environmentally exposed persons. Particularly, combinations of the various methods now allow the elucidation of specific adduct structures with detection limits of 1 adduct in 108 unmodified nucleotides or even lower. The quantification of polycyclic aromatic hydrocarbon-DNA (PAH-DNA) adducts in human tissues and cells has been achieved with a number of highly sensitive techniques: immunoassays and immunocytochemistry using polyclonal or monoclonal antisera specific for DNA adducts or modified DNA, the 32P-postlabelling assay, and adduct identification using physicochemical instrumentation. The results summarized in this review show that PAH-DNA adducts have been detected in a variety of human tissues, including target organs of PAH- and tobacco-associated cancers. Although dosimetry has not always been precise, a large number of data now clearly show that lowering exposure to carcinogenic PAH results in decreasing PAH-DNA adduct levels. In most studies, however, bulk DNA of a certain tissue or cell type has been examined, and there were relatively few studies in which mutations as a consequence of DNA damage at specific genes have been investigated. Promising as these biomarker studies seem for epidemiology and health surveillance, future biomonitoring and molecular epidemiological studies should be directed to combine several endpoint measurements: i.e., adduct formation (preferably at specific sites), mutational spectra in cancer-relevant genes, and genetic markers of (cancer) susceptibility in a number of cancer-predisposing genes.  相似文献   

19.
A biomonitoring study was conducted to simultaneously measure individual benzo(a)pyrene (BaP) exposure in 50 office employees, not occupationally exposed to polycyclic aromatic hydrocarbons (PAH), using personal samplers and the formation of (+) r-7, t-8-dihyroxy-t-9,t-10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) adducts to haemoglobin (BPDE-Hb) and serum albumin (BPDE-SA). The population enrolled was exposed to an average of 0.58 ± 0.46 ng BaP m-3 (mean ± SD). The concentration of BaP collected from smokers' samples was double that from non-smokers (P = 0.007). BPDE adducts to Hb and SA were quantified as BaP tetrols released from hydrolysis of macromolecules and measured by high-resolution gas chromatography-negative ion chemical ionization-mass spectrometry. BPDE-Hb adducts were detected in 16% of the population and BPDE-SA adducts in 28%. Smoking did not affect adduct formation. When BaP personal monitoring data were used as the criterion of exposure, no correlation was found with the presence and the levels of BPDE-Hb and BPDE-SA adducts. Undetected sources of PAH, such as the diet, might markedly alter the exposure profile depicted by individual air sampling and affect the frequency and levels of protein biomarkers. This is the first comparative analysis of BPDE-Hb and BPDE-SA adducts, providing reference values for these biomarkers in a general urban population. However it is difficult to establish which biomarkers would be the more relevant in assessing low BaP exposure, due to undetectable factors such as dietary PAHs, that might have influenced the results to some degree.  相似文献   

20.
Detailed studies were carried out on the binding of the enantiomers of [PtCl2(mepyrr)] (mepyrr = N-methyl-2-aminomethylpyrrolidine) to dG, d(GpG) and a 52-mer oligonucleotide. The pyrrolidine ligand structure was found to be neither sufficiently rigid nor bulky to enforce a single chirality at the exocyclic amine site in this complex, resulting in the presence of diastereomers that complicated the binding studies. Reaction of the (GpG) dinucleotide with R- and S-[PtCl2(mepyrr)] resulted in formation of four [Pt{d(GpG)}(mepyrr)] isomers for each enantiomer as a consequence of the existence of two orientational isomers and two diastereomers. These isomers formed in different amounts most likely as a consequence of the unequal formation of the diastereomers together with stereoselectivity induced by interactions between the dinucleotide and the mepyrr ligand. The [PtCl2(mepyrr)] complexes displayed stereoselectivity and enantioselectivity in their reactions with a 52-mer duplex designed to allow formation of only GpG intrastrand adducts. All four bifunctional adducts formed for each enantiomer, providing further evidence of the lack of directing ability of the ligand in formation of the 1,2-intrastrand adduct. Significant amounts of monofunctional species remained in these assays suggesting that the introduction of the methyl substituent to the exocyclic amine inhibited ring-closure to the bifunctional adduct. This was not sufficient to achieve enantiospecificity, but in the case of the R-enantiomer, one of the bifunctional adducts formed in only small amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号