首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell wall mycolyl-arabinogalactan–peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis and is the target of several antitubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. A bioinformatics approach identified putative integral membrane proteins, MSMEG2785 in Mycobacterium smegmatis , Rv2673 in Mycobacterium tuberculosis and NCgl1822 in Corynebacterium glutamicum , with 10 predicted transmembrane domains and a glycosyltransferase motif (DDX), features that are common to the GT-C superfamily of glycosyltransferases. Deletion of M. smegmatis MSMEG2785 resulted in altered growth and glycosyl linkage analysis revealed the absence of AG α(1→3)-linked arabinofuranosyl (Ara f ) residues. Complementation of the M. smegmatis deletion mutant was fully restored to a wild-type phenotype by MSMEG2785 and Rv2673, and as a result, we have now termed this previously uncharacterized open reading frame, a rabino f uranosyl t ransferase C ( aftC ). Enzyme assays using the sugar donor β- d -arabinofuranosyl-1-monophosphoryl-decaprenol (DPA) and a newly synthesized linear α(1→5)-linked Ara5 neoglycolipid acceptor together with chemical identification of products formed, clearly identified AftC as a branching α(1→3) arabinofuranosyltransferase. This newly discovered glycosyltransferase sheds further light on the complexities of Mycobacterium cell wall biosynthesis, such as in M. tuberculosis and related species and represents a potential new drug target.  相似文献   

2.
Ligation of mycolic acids to structural components of the mycobacterial cell wall generates a hydrophobic, impermeable barrier that provides resistance to toxic compounds such as antibiotics. Secreted proteins FbpA, FbpB, and FbpC attach mycolic acids to arabinogalactan, generating mycolic acid methyl esters (MAME) or trehalose, generating alpha,alpha'-trehalose dimycolate (TDM; also called cord factor). Our studies of Mycobacterium smegmatis showed that disruption of fbpA did not affect MAME levels but resulted in a 45% reduction of TDM. The fbpA mutant displayed increased sensitivity to both front-line tuberculosis-targeted drugs as well as other broad-spectrum antibiotics widely used for antibacterial chemotherapy. The irregular, hydrophobic surface of wild-type M. smegmatis colonies became hydrophilic and smooth in the mutant. While expression of M. smegmatis fbpA restored defects of the mutant, heterologous expression of the Mycobacterium tuberculosis fbpA gene was less effective. A single mutation in the M. smegmatis FbpA esterase domain inactivated its ability to provide antibiotic resistance. These data show that production of TDM by FbpA is essential for the intrinsic antibiotic resistance and normal colonial morphology of some mycobacteria and support the concept that FbpA-specific inhibitors, alone or in combination with other antibiotics, could provide an effective treatment to tuberculosis and other mycobacterial diseases.  相似文献   

3.
The isolation of elements driving high-level expression of foreign genes in mycobacteria would significantly aid characterization of mycobacterial antigens and recombinant vaccine development. Mycobacterium smegmatis is a widely employed host for recombinant mycobacterial gene expression. This report describes the identification of strong promoter elements of M. smegmatis. Fluorescence-activated cell sorting was employed to isolate DNA fragments permitting high-level expression of the Aequorea victoria green fluorescent protein within recombinant M. smegmatis. Ten postulated M. smegmatis promoters were identified which showed activity two to six times that of the strong beta-lactamase promoter of Mycobacterium fortuitum. The utility of one of these promoters for the over-expression of foreign genes in mycobacteria was demonstrated by the efficient purification of the Mycobacterium leprae 35-kDa antigen from recombinant M. smegmatis.  相似文献   

4.
5.
The modification of metabolic pathways to allow for a dormant lifestyle appears to be an important feature for the survival of pathogenic bacteria within their host. One regulatory mechanism for persistent Mycobacterium tuberculosis infections is the stringent response. In this study, we analyze the stringent response of a nonpathogenic, saprophytic mycobacterial species, Mycobacterium smegmatis. The use of M. smegmatis as a tool for studying the mycobacterial stringent response was demonstrated by measuring the expression of two M. tuberculosis genes, hspX and eis, in M. smegmatis in the presence and absence of rel(Msm). The stringent response plays a role in M. smegmatis cellular and colony formation that is suggestive of changes in the bacterial cell wall structure.  相似文献   

6.
The mycobacterial arabinan is an elaborate component of the cell wall with multiple glycosyl linkages and no repeating units. In Mycobacterium spp., the Emb proteins (EmbA, EmbB, and EmbC) have been identified as putative mycobacterial arabinosyltransferases implicated in the biogenesis of the cell wall arabinan. Furthermore, it is now evident that the EmbA and EmbB proteins are involved in the assembly of the nonreducing terminal motif of arabinogalactan and EmbC is involved in transferring arabinose, perhaps in the early stage of arabinan synthesis in lipoarabinomannan. It has also been shown that the Emb proteins are a target of the antimycobacterial drug ethambutol (EMB). In the search for additional mycobacterial arabinosyltransferases in addition to the Emb proteins, we disrupted MSMEG_6386 (an orthologue of Rv3792 and a gene upstream of embC) in Mycobacterium smegmatis. Allelic exchange at the chromosomal MSMEG_6386 locus of M. smegmatis could only be achieved in the presence of a rescue plasmid carrying a functional copy of MSMEG_6386 or Rv3792, strongly suggesting that MSMEG_6386 is essential. An in vitro arabinosyltransferase assay using a membrane preparation from M. smegmatis expressing Rv3792 and synthetic beta-d-Galf-(1-->5)-beta-D-Galf-(1-->6)-beta-D-Galf-octyl and beta-D-Galf-(1-->6)-beta-D-Galf-(1-->5)-beta-D-Galf-octyl showed that Rv3792 gene product can transfer an arabinose residue to the C-5 position of the internal 6-linked galactose. The reactions were insensitive to EMB, and when alpha-d-Manp-(1-->6)-alpha-D-Manp-(1-->6)-alpha-D-Manp-octylthiomethyl was used as an acceptor, no product was formed. These observations indicate that transfer of the first arabinofuranose residue to galactan is essential for M. smegmatis viability.  相似文献   

7.
The genus Mycobacterium comprises major human pathogens such as the causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), and many environmental species. Tuberculosis claims ~1.5 million lives every year, and drug resistant strains of Mtb are rapidly emerging. To aid the development of new tuberculosis drugs, major efforts are currently under way to determine crystal structures of Mtb drug targets and proteins involved in pathogenicity. However, a major obstacle to obtaining crystal structures is the generation of well-diffracting crystals. Proteins from thermophiles can have better crystallization and diffraction properties than proteins from mesophiles, but their sequences and structures are often divergent. Here, we establish a thermophilic mycobacterial model organism, Mycobacterium thermoresistibile (Mth), for the study of Mtb proteins. Mth tolerates higher temperatures than Mtb or other environmental mycobacteria such as M. smegmatis. Mth proteins are on average more soluble than Mtb proteins, and comparison of the crystal structures of two pairs of orthologous proteins reveals nearly identical folds, indicating that Mth structures provide good surrogates for Mtb structures. This study introduces a thermophile as a source of protein for the study of a closely related human pathogen and marks a new approach to solving challenging mycobacterial protein structures.  相似文献   

8.
Mycobacterium tuberculosis is a globally successful pathogen, infecting more than one third of total world's population. These bacteria have the remarkable ability to persist in the host for long periods of time unrecognized by the immune system and then to re-emerge later in life causing the disease. The physiology of such persistent or dormant bacilli is not very well characterized. Some evidence suggests that the dormant bacilli survive in a nutrient-deprived state that is similar to the stationary phase of the bacteria with respect to gene expression and physiology. Under this assumption we have studied the survival of Mycobacterium smegmatis in carbon starvation conditions as a model for mycobacterial persistence. M.smegmatis, being a fast-growing strain, serves as a good model to study starvation responses. Using the two-dimensional electrophoresis-based proteomics approach, we identified a protein which was found to be expressed preferentially under starvation conditions. This protein is homologous to a family of proteins called Dps (DNA binding Protein from Starved cells) that are known to protect DNA under various kinds of environmental stresses and its existence has, so far, not been reported in mycobacteria. Upon expression and purification of this protein, we observed that it has non-specific DNA-binding ability. Formation of a cage-like dodecamer structure is a characteristic feature of Dps. Using comparative modelling we were able to show that Dps from M.smegmatis could form a dodecamer structure similar to the crystal structure of Dps from Escherichia coli.  相似文献   

9.
The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy.  相似文献   

10.
The SecA2 protein is part of a specialized protein export system of mycobacteria. We set out to identify proteins exported to the bacterial cell envelope by the mycobacterial SecA2 system. By comparing the protein profiles of cell wall and membrane fractions from wild-type and DeltasecA2 mutant Mycobacterium smegmatis, we identified the Msmeg1712 and Msmeg1704 proteins as SecA2-dependent cell envelope proteins. These are the first endogenous M. smegmatis proteins identified as dependent on SecA2 for export. Both proteins are homologous to periplasmic sugar-binding proteins of other bacteria, and both contain functional amino-terminal signal sequences with lipobox motifs. These two proteins appeared to be genuine lipoproteins as shown by Triton X-114 fractionation and sensitivity to globomycin, an inhibitor of lipoprotein signal peptidase. The role of SecA2 in the export of these proteins was specific; not all mycobacterial lipoproteins required SecA2 for efficient localization or processing. Finally, Msmeg1704 was recognized by the SecA2 pathway of Mycobacterium tuberculosis, as indicated by the appearance of an export intermediate when the protein was expressed in a DeltasecA2 mutant of M. tuberculosis. Taken together, these results indicate that a select subset of envelope proteins containing amino-terminal signal sequences can be substrates of the mycobacterial SecA2 pathway and that some determinants for SecA2-dependent export are conserved between M. smegmatis and M. tuberculosis.  相似文献   

11.
Mycobacterial shuttle vectors contain dual origins of replication for growth in both Escherichia coli and mycobacteria. One such vector, pSUM36, was re-engineered for high-level protein expression in diverse bacterial species. The modified vector (pSUM-kan-MCS2) enabled green fluorescent protein expression in E. coli, Mycobacterium smegmatis, and M. avium at levels up to 50-fold higher than that detected with the parental vector, which was originally developed with a lacZα promoter. This high-level fluorescent protein expression allowed easy visualization of M. smegmatis and M. avium in infected macrophages. The M. tuberculosis gene esat-6 was cloned in place of the green fluorescence protein gene (gfp) to determine the impact of ESAT-6 on the innate inflammatory response. The modified vector (pSUM-kan-MCS2) yielded high levels of ESAT-6 expression in M. smegmatis. The ability of ESAT-6 to suppress innate inflammatory pathways was assayed with a novel macrophage reporter cell line, designed with an interleukin-6 (IL-6) promoter-driven GFP cassette. This stable cell line fluoresces in response to diverse mycobacterial strains and stimuli, such as lipopolysaccharide. M. smegmatis clones expressing high levels of ESAT-6 failed to attenuate IL-6-driven GFP expression. Pure ESAT-6, produced in E. coli, was insufficient to suppress a strong inflammatory response elicited by M. smegmatis or lipopolysaccharide, with ESAT-6 itself directly activating the IL-6 pathway. In summary, a pSUM-protein expression vector and a mammalian IL-6 reporter cell line provide new tools for understanding the pathogenic mechanisms deployed by various mycobacterial species.  相似文献   

12.
13.
The cloned mammalian cell entry gene mce1a from Mycobacterium tuberculosis confers to non-pathogenic Escherichia coli the ability to invade and survive inside macrophages and HeLa cells. The aim of this work was to search for and characterize homologs of the four M. tuberculosis mammalian cell entry operons (mce1, mce2, mce3 and mce4) in mycobacteria other than tuberculosis (MOTT). The dot-blot and polymerase chain reaction (PCR) experiments performed on 24 clinical isolates representing 20 different mycobacterial species indicated that the mce operons were widely distributed throughout the genus Mycobacterium. BLAST search results showed the presence of mce1, mce2 and mce4 homologs in Mycobacterium bovis, Mycobacterium avium and Mycobacterium smegmatis. A homologous region for the mce3 operon was also found in M. avium and M. smegmatis. DNA and protein alignments were done to compare the M. tuberculosis mce operons and the deduced M. bovis, M. avium, and M. smegmatis homologs. The deduced proteins of M. bovis mce1, mce2 and mce4 operons had 99.6-100% homology with the respective M. tuberculosis mce proteins (MTmce). The similarity between M. avium mce proteins and the individual M. tuberculosis homologs ranged from 56.2 to 85.5%. The alignment results between M. smegmatis mce proteins and the respective MTmce proteins ranged from 58.5% to 68.5%. Primer sets were designed from the M. tuberculosis mce4a gene for amplification of 379-bp fragments. Amplification was successful in 14 strains representing 11 different mycobacterial species. The PCR fragments were sequenced from 10 strains representing eight species. Alignment of the sequenced PCR products showed that mce4a homologs are highly conserved in the genus Mycobacterium. In conclusions, the four mce operons in different mycobacterial species are generally organized in the same manner. The phylogenetic tree comparing the different mce operons showed that the mce1 operon was closely related to the mce2 operon and mce3 diverged from the other operons. The wide distribution of the mce operons in pathogenic and non-pathogenic mycobacteria implicates that the presence of these putative virulence genes is not an indicator for the pathogenicity of the bacilli. Instead, the pathogenicity of these factors might be determined by their expression.  相似文献   

14.
15.
Mycobacterium tuberculosis is a natural mutant with inactivated oxidative stress regulatory gene oxyR. This characteristic has been linked to the exquisite sensitivity of M. tuberculosis to isonicotinic acid hydrazide (INH). In the majority of mycobacteria tested, including M. tuberculosis, oxyR is divergently transcribed from ahpC, a gene encoding a homolog of the subunit of alkyl hydroperoxide reductase that carries out substrate peroxide reduction. Here we compared ahpC expression in Mycobacterium smegmatis, a mycobacterium less sensitive to INH, with that in two highly INH sensitive species, M. tuberculosis and Mycobacterium aurum. The ahpC gene of M. smegmatis was cloned and characterized, and the 5' ends of ahpC mRNA were mapped by S1 nuclease protection analysis. M. smegmatis AhpC and eight other polypeptides were inducible by exposure to H2O2 or organic peroxides, as determined by metabolic labeling and Western blot (immunoblot) analysis. In contrast, M. aurum displayed differential induction of only one 18-kDa polypeptide when exposed to organic peroxides. AhpC could not be detected in this organism by immunological means. AhpC was also below detection levels in M. tuberculosis H37Rv. These observations are consistent with the interpretation that ahpC expression and INH sensitivity are inversely correlated in the mycobacterial species tested. In further support of this conclusion, the presence of plasmid-borne ahpC reduced M. smegmatis susceptibility to INH. Interestingly, mutations in the intergenic region between oxyR and ahpC were identified and increased ahpC expression observed in deltakatG M. tuberculosis and Mycobacterium bovis INH(r) strains. We propose that mutations activating ahpC expression may contribute to the emergence of INH(r) strains.  相似文献   

16.
The protein encoded by the lexA gene from Mycobacterium leprae was overproduced in Escherichia coli . The recombinant protein bound to the promoter regions of the M. leprae lexA , M. leprae recA and M. smegmatis recA genes at sites with the sequences 5'-GAACACATGTTT and 5'-GAACAGGTGTTC, which belong to the 'Cheo box' family of binding sites recognized by the SOS repressor from Bacillus subtilis . Gel mobility shift assays were used to confirm that proteins with the same site specificity of DNA binding are also present in Mycobacterium tuberculosis and M. smegmatis . Complex formation was impaired by mutagenic disruption of the dyad symmetry of the M. smegmatis recA Cheo box. LexA binding was also inhibited by preincubation of the M. smegmatis and M. tuberculosis extracts with anti- M. leprae LexA antibodies, suggesting that the mycobacterial LexA proteins are functionally conserved at the level of DNA binding. Finally, exposure of M. smegmatis to DNA-damaging agents resulted in induction of the M. smegmatis recA promoter with concomitant loss of DNA binding of LexA to its Cheo box, confirming that this organism possesses the key regulatory elements of a functional SOS induction system.  相似文献   

17.
There is little information regarding the role of proteolysis in Mycobacterium tuberculosis and no studies on the potential involvement of proteases in the pathogenesis of tuberculosis. We identified five M. tuberculosis genes (mycP1-5) that encode a family of serine proteases (mycosins-1 to 5), ranging from 36 to 47% identity. Each protein contains a catalytic triad (Asp, His, Ser) within highly conserved sequences, typical of proteases of the subtilisin family. These genes are also present in M. bovis BCG and other virulent mycobacteria, but only one homologue (mycP3) was detected in M. smegmatis. The mycosins have N-terminal signal sequences and C-terminal transmembrane anchors, and the localisation of the mycosins to the membrane/cell wall was verified by Western blot analysis of heterologously expressed proteins in cellular fractions of M. smegmatis. In M. tuberculosis, all the mycosins were expressed constitutively during growth in broth. Mycosins-2 and 3 were also expressed constitutively in M. bovis BCG, but no expression of mycosin-1 was detected. Mycosin-2 was modified by cleavage in all three mycobacterial species. The multiplicity and constitutive expression of these proteins suggests that they have an important role in the biology of M. tuberculosis.  相似文献   

18.
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over‐express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non‐pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.  相似文献   

19.
Identification of the novel PE multigene family was an unexpected finding of the genomic sequencing of Mycobacterium tuberculosis. Presently, the biological role of the PE and PE_PGRS proteins encoded by this unique family of mycobacterial genes remains unknown. In this report, a representative PE_PGRS gene (Rv1818c/PE_PGRS33) was selected to investigate the role of these proteins. Cell fractionation studies and fluorescence analysis of recombinant strains of Mycobacterium smegmatis and M. tuberculosis expressing green fluorescent protein (GFP)-tagged proteins indicated that the Rv1818c gene product localized in the mycobacterial cell wall, mostly at the bacterial cell poles, where it is exposed to the extracellular milieu. Further analysis of this PE_PGRS protein showed that the PE domain is necessary for subcellular localization. In addition, the PGRS domain, but not PE, affects bacterial shape and colony morphology when Rv1818c is overexpressed in M. smegmatis and M. tuberculosis. Taken together, the results indicate that PE_PGRS and PE proteins can be associated with the mycobacterial cell wall and influence cellular structure as well as the formation of mycobacterial colonies. Regulated expression of PE genes could have implications for the survival and pathogenesis of mycobacteria within the human host and in other environmental niches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号