首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships between functional traits and environmental gradients are useful to identify different community assembly processes. In this work, we used an approach based on functional traits to analyse if changes in hydroperiod and tree covers of ponds are relevant for local amphibian community assembly processes. Ephemeral ponds with low vegetation cover are expected to impose constraints on different species with particular trait combinations and, therefore, to exhibit communities with lower functional diversity than more stable ponds with greater tree cover. Sampling was conducted in 39 temporary ponds located along vegetation and hydroperiod gradients in the most arid portion of the Chaco ecoregion. Seven functional traits were measured in each species present in the regional pool. Associations between these traits and environmental gradients were detected using multivariate ordination techniques and permutation test (RLQ and fourth‐corner analyses respectively). Functional diversity indices were then calculated and related to variations in the environmental gradients. The results obtained allowed us to identify different sets of traits associated with hydroperiod and tree cover, suggesting that these environmental variables are relevant for structuring amphibian communities according to interspecific variations in functional traits from both, larval and adult stages. Contrary to our expectations, communities associated with more stable ponds and with greater tree cover exhibited lower functional diversity than expected by chance (and were the ponds with highest species richness). This result indicates that the reduction in relative importance of environmental restrictions imposed by a very short hydroperiod and the lack of tree cover, favours different species of the regional pool that are similar in several functional traits. Accordingly, communities associated with stable ponds with high tree cover exhibited high functional redundancy.  相似文献   

2.
Understanding how regional ecosystems respond to sea‐level and environmental perturbations is a main challenge in palaeoecology. Here we use quantitative abundance estimates, integrated within a sequence stratigraphic and environmental framework, to reconstruct benthic community changes through the 13 myr history of the Jurassic Sundance Seaway in the western United States. Sundance Seaway communities are notable for their low richness and high dominance relative to most areas globally in the Jurassic, and this probably reflects steep temperature and salinity gradients along the 2000 km length of the Seaway that hindered colonization of species from the open ocean. Ordination of samples shows a main turnover event at the Middle–Upper Jurassic transition, which coincided with a shift from carbonate to siliciclastic depositional systems in the Seaway, probably initiated by northward drift from subtropical latitudes to more humid temperate latitudes, and possibly global cooling. Turnover was not uniform across the onshore–offshore gradient, but was higher in offshore environments. The higher resilience of onshore communities to third‐order sea‐level fluctuations and to the change from a carbonate to a siliciclastic system was driven by a few abundant eurytopic species that persisted from the opening to the closing of the Seaway. Lower stability in offshore facies was instead controlled by the presence of more volatile stenotopic species. Such increased onshore stability in community composition contrasts with the well‐documented onshore increase in taxonomic turnover rates, and this study underscores how ecological analyses of relative abundance may contrast with taxonomically based analyses. We also demonstrate the importance of a stratigraphic palaeobiological approach to reconstructing the links between environmental and faunal gradients, and how their evolution through time produces local stratigraphic changes in community composition.  相似文献   

3.
Lithofacies analysis of the upper part of the Pliocene succession of the Valdelsa basin (central Italy) unravelled a number of depositional environments, ranging from alluvial plain to coastal, to marine. Strata are arranged in a hierarchy of elementary and composite unconformity-bounded units. A palaeoecological study of macro- (molluscs) and microfossils (pollen, dinocysts, foraminifera) allowed to finely reconstruct sub-environments within fine-grained terrestrial, coastal and marine deposits and thence to track the spatial and temporal change of physical conditions. The stacking pattern of sedimentary units highlights the lateral switching of onshore-offshore gradients and documents relative sea-level changes. These units are interpreted in a sequence stratigraphic framework. Elementary depositional sequences are arranged to form six composite depositional sequences, in turn encased within two major synthems. This hierarchy of unconformity-bounded sedimentary units suggests that sea-level variation has occurred at different time-frequencies. Glacio-eustasy and active tectonism are discussed as the main forcing factors regulating the different scales of sedimentary cyclicity.  相似文献   

4.
Studies in modern ecology indicate that most species are distributed independently along environmental gradients according to their individual requirements. Steep gradients often produce species associations separated by discontinuities; gradual gradients produce broadly-overlapping distributions. Approaching the distribution of species populations as a continuum, using gradient analysis, avoids artificial subdivision of totally intergrading distributions, yet permits discontinuities to emerge where present. Faunas of the Martinsburg Formation (Ordovician) in southwestern Virginia offer an excellent opportunity to test the applicability of gradient analysis in a paleoecological setting. A broad spectrum of environments, from nearshore to open-marine, clastic to carbonate-dominated facies, provide both temporal and geographic variation against which to evaluate changes in species distributions. Variations of five classical, Petersen-type communities were recognized in the Martinsburg using cluster analysis: (1) Lingula, (2) bivalve, (3) Rafinesquina, (4) Onniella, and (5) Sowerbyella-dominated communities. Two gradient analysis techniques, ordination and Markov analysis, revealed the same basic associations. However, ordination and Markov analysis permit arrangement of these associations along one or more interpreted environmental gradients. Factors related to water depth and distance from clastic source areas, particularly bottom stability and disturbance frequency, appear to have been the most important of a complex of interrelated physical parameters. The high-stress, nearshore end of the Martinsburg gradient complex was occupied by a Lingula association, followed seaward by an association of bivalves adapted to less-stressed environments. Low-stress, open-shelf environments were occupied by Rafines-quina, Onniella, or Sowerbyella-dominated associations. Broad overlaps among these articulate brachio-pod associations reflect variations in the open-shelf habitat.  相似文献   

5.
We investigated and monitored a reed community in the fields.Data on the bio-ecologieal characteristics and β-diversity of reed communities in different environmental gradients (mainly based on water depth) of the Yellow River Delta were collected through multianalysis,extremum analysis and β-diversity index analysis.In accordance with the square sum of deviations (Ward)cluster analysis,10 sampling plots were divided into six types with the dominant plants in different plots varying according to the change in environmental gradients.The dominant plants in these plots varied from aquatic plants to xerophytes and salt tolerant plants as water depth decreased.The average height and diameter of the reeds at breast level were significantly correlated with the average water depth.The fitness curves of average density and coverage with average water depth were nonlinear.When the average water depth was 0.3 m,the average density and coverage of reeds reached the apex value,while the height and diameter of the reeds at breast level increased with the water depth.There were obvious changes to the environmental gradient in the Yellow River Delta.The transitional communities were also found to exist in the Yellow River Delta by β-diversity analysis.Vicarious species appeared with the change in water depth.The occurrence of substitute species is determined by the function of common species between adjacent belts.The different functions of common species led to differences in community structure and function and differences in dominant plants.The result reflects the variations of species present in different habitats and directly reflects environmental heterogeneity.The values of//-diversity indices of adjacent plots were higher than those of nonadjacent plots.There are transition zones between the xerophytes and aquatic plants in the Yellow River Delta.In an aquatic environment,the similarity of reed community is higher than that of xeromorphic plants.The β-diversity index can reflect plant succession trends caused by the change in environmental gradients in the Yellow River Delta.The β-diversity index reveals plant responses to changes in environmental gradient and is helpful in observing changes in patterns of species diversity in relation to environmental gradient change and evolving trends in the future,which in turn plays a prominent role when environmental water requirements of wetland are discussed.  相似文献   

6.
Understanding which factors and rules govern the process of assembly in communities constitutes one of the main challenges of plant community ecology. The presence of certain functional strategies along broad environmental gradients can help to understand the patterns observed in community assembly and the filtering mechanisms that take place. We used a trait‐based approach, quantifying variations in aboveground (leaf and stem) and belowground (root) functional traits along environmental gradients in Mediterranean forest communities (south Spain). We proposed a new practical method to quantify the relative importance of species turnover (distinguishing between species occurrence and abundance) versus intraspecific variation, which allowed us to better understand the assemblage rules of these plant communities along environmental gradients. Our results showed that the functional structure of the studied plant communities was highly determined by soil environment. Results from our modelling approach based on maximum likelihood estimators showed a predominant influence of soil water storage on most of the community functional traits. We found that changes in community functional structure along environmental gradients were mainly promoted by species turnover rather than by intraspecific variability. Specifically, our new method of variance decomposition demonstrated that between‐site trait variation was the result of changes in species occurrence rather than in the abundance of certain dominant species. In conclusion, this study showed that water availability promoted the predominance of specific trait values (both in above and belowground fractions) associated to a resource acquisition or conservation strategy. In addition, we provided evidence that changes on community functional structure along the environmental gradient were mainly promoted by a process of species replacement, which represent a crucial step towards a more general understanding of the relative importance of intraspecific versus interspecific trait variation in these woody Mediterranean communities.  相似文献   

7.
Pliocene strata in the Kettleman Hills of west-central California were deposited in the broad San Joaquin embayment as a cyclic succession of parasequences during approximately three million years. Depositional environments within each cycle ranged from relatively open marine to brackish and non-marine. Although the strata were deposited in similar, recurrent environments, the fauna changed gradually rather than during brief intervals separating periods of stasis. Although environmental gradients and community structure in the Pliocene San Joaquin Embayment and in the present-day San Francisco Bay are similar, species compositions of the faunas and of parallel communities at the two sites are markedly different. In addition, times of origination and extinction of species in the Pliocene strata of the Kettleman Hills and in San Francisco Bay do not document coordinated stasis within the Late Cenozoic. In contrast, Silurian and Devonian faunas and communities of the Appalachian Basin persisted with little change in ecological-evolutionary units that lasted for up to eight million years. Relatively brief intervals of great biotic change separate these intervals of stasis. One intriguing explanation of this pattern of coordinated stasis within an ecologic-evolutionary unit is ecological locking, in which interaction between species within the community is sufficiently strong that only major changes in the environment are able to change community and faunal composition. Probably the late Cenozoic fauna underwent rapid evolution as a result of rapidly changing environmental conditions within a complex and changing shallow, inshore marine paleogeography. In contrast, coordinated stasis in the lower Paleozoic probably resulted from negligible evolution during long periods of stable to gradually changing environments in an outer shelf setting, punctuated by brief episodes of abrupt environmental change and large-scale turnover. The independent assortment of species in late Cenozoic parallel communities indicates that ecological locking did not exist.  相似文献   

8.
Aim The aim of this study was to explore the environmental factors that determine the spatial distribution of oro‐mediterranean and alti‐mediterranean plant communities in Crete. Location The paper provides a quantitative analysis of vegetation–environment relationships for two study areas within the Lefka Ori massif Crete, a proposed Natura 2000 site. Methods Eleven environmental variables were recorded: altitude, slope, aspect, percentage of bare rock, percentage of unvegetated ground, soil depth, pH, organic matter content and percentages of sand, silt and clay content. Classification of the vegetation was based on twinspan , while detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to identify environmental gradients linked to community distribution. Results One hundred and twenty‐five species were recorded from 120 plots located within the two study areas. Forty‐seven of the recorded species are endemic, belonging to 35 families. Hemicryptophytes and chamaephytes were the most frequent, suggesting a typical oro‐mediterranean life form spectrum. The samples were classified into five main community types and one transitional. The main gradients, identified by CCA, were altitude and surface cover type in the North‐west site, while in the Central site the gradients were soil formation‐development and surface cover type. Main conclusions The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities and a greater understanding of controlling environmental factors. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean mountain zones.  相似文献   

9.
1. Patterns in species assemblages are the result of the combined influence of processes acting on different spatial scales. Various studies describe the distribution of macroinvertebrate communities and their relationship with environmental factors at different geographical scales, but only a few of these studies concentrate on Western European lowlands. 2. Using Flanders as representative for the densely populated Western‐European lowlands, the specific aims of this study are: (i) to identify the different trichopteran species assemblages and to characterise them biologically using indicator species; (ii) to determine which environmental gradients most influence the observed species assemblages; and (iii) to analyse the relative importance of different spatial scale variables in constraining the Trichoptera distributions. 3. Assessment of the main environmental gradients suggested that the absence of Trichoptera from certain locations was mainly due to elevated nutrient concentrations and lower oxygen contents, confirming their sensitivity to anthropogenic disturbance. 4. Five Trichoptera species assemblages were distinguished based on Bray–Curtis dissimilarity coefficients. These assemblages did not differ significantly in species richness, but a shift in stream zonation preference was observed. In the ordination analysis 11 variables that were selected using a stepwise model building function manifested themselves as upstream–downstream and size‐related gradients. The Trichoptera assemblages in lowland streams thus appear to follow a longitudinal succession pattern that corresponds with the species‐specific preferences. 5. Partitioning the variance over the different spatial scales indicated that the reach‐scale variables were far more important in explaining the variation in species composition. The study design, which limited the minimum–maximum range of catchment‐scale characteristics, however, may have led to an overestimation of the impact of the local‐scale variables.  相似文献   

10.
Glacier chronosequences are important sites for primary succession studies and have yielded well‐defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant‐associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root‐associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non‐replacement). At both sites, the root‐associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal community's successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional‐replacement successional trajectory, and the arctic site displayed a directional‐non‐replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root‐associated fungi. The need for further replicated study, including in other host species, is emphasized.  相似文献   

11.
The question of whether ecological assemblages are structured by stochastic and deterministic (e.g. interspecific competition) processes is controversial, but it is difficult to design sampling regimes and experiments that can dissect the relative importance of stochastic and deterministic processes in natural assemblages. Using null models, we tested communities of arthropod decomposers in tropical epiphytes for patterns of species co-occurrence, while controlling for habitat gradients, seasonal variations and ecological succession. When environmental conditions were controlled, our analysis showed that the communities were structured stochastically. However, analysing mixed sets of communities that were deliberately created either from two distinct heights or two successional stages revealed that communities were structured deterministically. These results confirm that habitat gradients and dispersal/competition trade-offs are capable of generating non-random patterns within decomposer arthropod communities, but reveal that when such effects are accounted for, species co-occurrence is fundamentally random.  相似文献   

12.
Establishing which factors determine species distributions is of major relevance for practical applications such as conservation planning. The Amazonian lowlands exhibit considerable internal heterogeneity that is not apparent in existing vegetation maps. We used ferns as a model group to study patterns in plant species distributions and community composition at regional and landscape scales. Fern species composition and environmental data were collected in 109 plots of 250 × 2 m distributed among four sites in Brazilian Amazonia. Interplot distances varied from 1 to ca 670 km. When floristically heterogeneous datasets were analyzed, the use of an extended Sørensen dissimilarity index rather than the traditional Sørensen index improved model fit and made interpretation of the results easier. Major factors associated with species composition varied among sites, difference in cation concentration was a strong predictor of floristic dissimilarity in those sites with pronounced heterogeneity in cation concentration. Difference in clay content was the most relevant variable in sites with uniform cation concentrations. In every case, environmental differences were invariably better than geographic distances in predicting species compositional differences. Our results are consistent with the ideas that: (1) the relative predictive capacity of the explanatory variables depend on the relative lengths of the observed gradients; and (2) environmental gradients can be hierarchically structured such that gradients occur inside gradients. Therefore, site‐specific relationships among variables can mask the bigger picture and make it more difficult to unravel the factors structuring plant communities in Amazonia.  相似文献   

13.
Following environmental changes, communities disassemble and reassemble in seemingly unpredictable ways. Whether species respond to such changes individualistically or collectively (e.g. as functional groups) is still unclear. To address this question, we used an extensive new dataset for the lake communities in the Azores' archipelago to test whether: 1) individual species respond concordantly within trophic groups; 2) trophic groups respond concordantly to biogeographic and environmental gradients. Spatial concordance in individual species distributions within trophic groups was always greater than expected by chance. In contrast, trophic groups varied non‐concordantly along biogeographic and environmental gradients revealing idiosyncratic responses to them. Whether communities respond individualistically to environmental gradients thus depends on the functional resolution of the data. Our study challenges the view that modelling environmental change effects on biodiversity always requires an individualist approach. Instead, it finds support for the longstanding idea that communities might be modelled as a cohort if the functional resolution is appropriate.  相似文献   

14.
Tad Dallas 《Ecography》2014,37(4):402-405
Metacommunity theory is an extension of metapopulation theory with the goal of understanding how ecological communities vary through space and time. One off‐shoot of metacommunity theory deals with understanding how community structure varies along biotic or environmental gradients. The Elements of Metacommunity Structure framework is a three‐tiered analysis of metacommunity structure that enables the user to identify metacommunity properties that arise in site‐by‐species incidence matrices. These properties can then be related to underlying variables that influence species distributions. The EMS framework is now implemented in metacom, an open source R package that allows for the analysis and plotting of metacommunities.  相似文献   

15.
Questions: How is seedling regeneration of woody species of semi‐deciduous rain forests affected by (a) historical management for combinations of logging, arboricide treatment or no treatment, (b) forest community type and (c) environmental gradients of topography, light and soil nutrients? Location: Budongo Forest Reserve, Uganda. Methods: Seedling regeneration patterns of trees and shrubs in relation to environmental factors and historical management types were studied using 32 0.5‐ha plots laid out in transects along a topographic gradient. We compared seedling species diversity, composition and distribution patterns along topographic gradients and within types of historical management regimes and forest communities to test whether environmental factors contributed to differences in species composition of seedlings. Results: A total of 85 624 woody seedlings representing 237 species and 46 families were recorded in this rain forest. Cynometra alexandri C.H. Wright and Lasiodiscus mildbraedii Engl. had high seedling densities and were widely distributed throughout the plots. The most species‐rich families were Euphorbiaceae, Fabaceae, Rubiaceae, Meliaceae, Moraceae and Rutaceae. Only total seedling density was significantly different between sites with different historical management, with densities highest in logged, intermediate in logged/arboricided and lowest in the nature reserve. Forest communities differed significantly in terms of seedling diversity and density. Seedling composition differed significantly between transects and forest communities, but not between topographic positions or historical management types. Both Chao‐Jaccard and Chao‐Sørensen abundance‐based similarity estimators were relatively high in the plot, forest community and in terms of historical management levels, corroborating the lack of significant differences in species richness within these groups. The measured environmental variables explained 59.4% of variance in seedling species distributions, with the three most important being soil organic matter, total soil titanium and leaf area index (LAI). Total seedling density was positively correlated with LAI. Differences in diversity of >2.0 cm dbh plants (juveniles and adults) also explained variations in seedling species diversity. Conclusions: The seedling bank is the major route for regeneration in this semi‐deciduous tropical rain forest, with the wide distribution of many species suggesting that these species regenerate continuously. Seedling diversity, density and distribution are largely a function of adult diversity, historical management type and environmental gradients in factors such as soil nutrient content and LAI. The species richness of seedlings was higher in soils both rich in titanium and with low exchangeable cations, as well as in logged areas that were more open and had a low LAI.  相似文献   

16.
We investigated and monitored a reed community in the fields. Data on the bio-ecological characteristics and β-diversity of reed communities in different environmental gradients (mainly based on water depth) of the Yellow River Delta were collected through multianalysis, extremum analysis and β-diversity index analysis. In accordance with the square sum of deviations (Ward) cluster analysis, 10 sampling plots were divided into six types with the dominant plants in different plots varying according to the change in environmental gradients. The dominant plants in these plots varied from aquatic plants to xerophytes and salt tolerant plants as water depth decreased. The average height and diameter of the reeds at breast level were significantly correlated with the average water depth. The fitness curves of average density and coverage with average water depth were nonlinear. When the average water depth was 0.3 m, the average density and coverage of reeds reached the apex value, while the height and diameter of the reeds at breast level increased with the water depth. There were obvious changes to the environmental gradient in the Yellow River Delta. The transitional communities were also found to exist in the Yellow River Delta by β-diversity analysis. Vicarious species appeared with the change in water depth. The occurrence of substitute species is determined by the function of common species between adjacent belts. The different functions of common species led to differences in community structure and function and differences in dominant plants. The result reflects the variations of species present in different habitats and directly reflects environmental heterogeneity. The values of β-diversity indices of adjacent plots were higher than those of nonadjacent plots. There are transition zones between the xerophytes and aquatic plants in the Yellow River Delta. In an aquatic environment, the similarity of reed community is higher than that of xeromorphic plants. The β-diversity index can reflect plant succession trends caused by the change in environmental gradients in the Yellow River Delta. The β-diversity index reveals plant responses to changes in environmental gradient and is helpful in observing changes in patterns of species diversity in relation to environmental gradient change and evolving trends in the future, which in turn plays a prominent role when environmental water requirements of wetland are discussed. __________ Translated from Acta Ecologica Sinica, 2006, 26(5): 1533–1541 [译自: 生态学报]  相似文献   

17.
Aim Historical land use in eastern North America and much of Europe has created a mosaic of successional forest stands of widely varying age. An estimate of the rate of successional community development would allow the conservation value of individual stands to be assessed. We estimate the rate of herb community development in secondary forests in our region, and the extent to which physical gradients determine herb distributions. Location Second‐growth forest in the Appalachian Oak section of the Central Hardwoods Region, southeastern Ohio, USA. Methods Thirty‐five plots were surveyed in old (82–193 years) and young (35–40 years since pasture) deciduous forest stands and pine plantations. In each plot, herb species cover and environmental factors were measured. Results Herb community composition was clearly distinguishable between oak‐dominated upland sites and mixed mesophytic stands in moist ravines. In both community types, young stands were compositionally distinct from old stands. Species lacking obvious seed dispersal mechanisms were disproportionately uncommon in young stands, implying dispersal limitation in the process of recolonization. Among old stands, distributions of many species showed significant regressions on the environmental variables, whereas few showed significance in young stands. Species with weak dispersal tended to be more frequently linked to environmental gradients in old stands than in young stands. Main conclusions Early arriving forest species appear to assort rapidly along physical gradients, defining communities early in the successional trajectory. The re‐assembly of the full forest community continues over a longer period as individual species assort on environmental gradients at rates determined by their dispersal abilities. Thus, long‐established stands show more spatial variation than successional stands, and offer greater opportunities for conservation of the forest community.  相似文献   

18.
Invasive species can alter the succession of ecological communities because they are often adapted to the disturbed conditions that initiate succession. The extent to which this occurs may depend on how widely they are distributed across environmental gradients and how long they persist over the course of succession. We focus on plant communities of the USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in sediment supply, and the plant community is dominated by two introduced grasses – the long-established Ammophila arenaria and the currently invading A. breviligulata. Previous studies showed that A. breviligulata has replaced A. arenaria and reduced community diversity. We hypothesize that this is largely due to A. breviligulata occupying a wider distribution across spatial environmental gradients and persisting in later-successional habitat than A. arenaria. We used multi-decadal chronosequences and a resurvey study spanning 2 decades to characterize distributions of both species across space and time, and investigated how these distributions were associated with changes in the plant community. The invading A. breviligulata persisted longer and occupied a wider spatial distribution across the dune, and this corresponded with a reduction in plant species richness and native cover. Furthermore, backdunes previously dominated by A. arenaria switched to being dominated by A. breviligulata, forest, or developed land over a 23-yr period. Ammophila breviligulata likely invades by displacing A. arenaria, and reduces plant diversity by maintaining its dominance into later successional backdunes. Our results suggest distinct roles in succession, with A. arenaria playing a more classically facilitative role and A. breviligulata a more inhibitory role. Differential abilities of closely-related invasive species to persist through time and occupy heterogeneous environments allows for distinct impacts on communities during succession.  相似文献   

19.
Jessica R. Coyle 《Oikos》2017,126(1):111-120
Forest canopies are heterogeneous environments where changes in microclimate over short distances create an opportunity for niche‐based filtering of canopy‐dwelling species assemblages. This environmental filtering may not occur if species' physiological capacities are flexible or if rapid dispersal alleviates compositional differences. I assess the role of humidity, light and temperature gradients in structuring epiphyte communities in temperate deciduous oak (Quercus) canopies and determine whether gradients filter species with fixed traits or whether environmental constraints act primarily to alter individual phenotypes. I measured environmental conditions and seven functional traits related to water and light acquisition on individual macrolichens at 60 sample locations in northern red oaks Quercus rubra in two Piedmont forests in North Carolina, USA. The effects of environmental variables on individual‐level traits and community composition were evaluated using linear mixed models and constrained ordination (RDA). In general, traits and community composition responded weakly to environmental variables and trait variation within taxa was high. Cortex thickness exhibited the strongest response, such that individuals with thicker cortices were found in samples experiencing lower humidity and higher light levels. Overall, gradients of humidity, light and temperature were not strong environmental filters that caused large changes in community composition. This was probably due to phenotypic variability within taxa that enabled species to persist across the full range of environmental conditions measured. Thus, humidity affected the phenotype of individuals, but did not limit species distributions or alter community composition at the scale of branches within trees. Community and trait responses were primarily associated with site‐level differences in humidity, suggesting that in these forests landscape‐scale climatic gradients may be stronger drivers of epiphyte community assembly than intra‐canopy environmental gradients.  相似文献   

20.
The interpretation of natural plant communities frequently invokes species‐sorting controlled by niche differences along spatial environmental gradients. This process of niche structuring can be explained by reference to functional traits, which provide a mechanistic explanation for community structure. In contrast, models explaining species coexistence obviate the limiting effect of niche difference, by invoking processes which cause species‐level drift, e.g. demographic stochasticity. This paper investigates a simple habitat with strong gradients (moss communities in a patterned arctic wetland) to identify signature‐patterns under‐pinning the relative importance of deterministic assembly and stochastic drift in a natural community. First, ordination analysis was used to confirm community composition structured by a range of nine carefully selected functional traits. Second, to determine whether traits explaining community composition might also explain species richness, local species richness (sR) was compared to (1) observed trait diversity and (2) expected trait diversity based on permutation tests, which are used to simulate null community assembly for different values of sR. Traits explaining species composition, consistent with deterministic niche structuring, do not appear to maintain sR. This surprising result was explained by decomposing the community into individual pair‐wise comparisons, i.e. species niche‐differences and association (χ2). Results support deterministic processes via the sorting of species with similar and contrasting niches, at opposite ends of a composite environmental gradient. Nevertheless, stochastic drift is apparent in the random structure of a majority of pair‐wise associations; in addition, a species’ abundance was in general not related to environmental distance from response‐optima. We suggest therefore that spatial pattern in the moss community is a balance between deterministic forces with respect to species traits and controlling environmental gradients, and stochastic drift, which weakens this deterministic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号