首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Phytomyza Fallén is the largest genus of leaf‐mining flies (Agromyzidae), with over 530 described species. Species of the superficially similar genus Chromatomyia Hardy have been included in Phytomyza by some authors and the status of the genus remains uncertain. Using 3076 bp of DNA sequence from three genes [cytochrome oxidase I (COI), CAD (rudimentary), phosphogluconate dehydrogenase (PGD)] and 113 exemplar species, we identified and tested the monophyly of host‐associated species groups in Phytomyza and Chromatomyia and investigated the phylogenetic relationships among these groups. Chromatomyia is polyphyletic and nested largely within Phytomyza; two small groups of species, however, are related more closely to Ptochomyza and Napomyza. Therefore, we synonymize Chromatomyia syn.n. , Ptochomyza syn.n. , and Napomyza syn.n. with Phytomyza, recognizing Ptochomyza, Napomyza and Phytomyza sensu stricto as subgenera of Phytomyza. We recognize five major clades within Phytomyza sensu stricto that comprise the majority of species ascribed previously to Chromatomyia and Phytomyza. Many species groups recognized previously were recovered as monophyletic, or virtually so, but some (e.g. robustella and atomaria groups) required emendation. On the basis of the proposed phylogeny and recent taxonomic literature, we present a preliminary revision of 24 species groups within Phytomyza, but leave many species unplaced. Evolution of internal pupariation (within the host’s tissue), regarded as a defining character of the former Chromatomyia, is discussed with regard to the new phylogeny, and we suggest a correlation with stem or leaf midrib mining. The large size of the Phytomyza lineage and an inferred pattern of host family‐specific species radiations make it a promising candidate for the study of macroevolutionary patterns of host shift and diversification in phytophagous insects. The proposed generic synonymies necessitate a number of new combinations. The following 46 species described in Chromatomyia are transferred to Phytomyza: P. actinidiae (Sasakawa) comb.n. , P. alopecuri (Griffiths) comb.n. , P. arctagrostidis (Griffiths) comb.n. , P. beigerae (Griffiths) comb.n. , P. blackstoniae (Spencer) comb.n. , P. centaurii (Spencer) comb.n. , P. chamaemetabola (Griffiths) comb.n. , P. cinnae (Griffiths) comb.n. , P. compta (Spencer) comb.n. , P. cygnicollina (Griffiths) comb.n. , P. doolittlei (Spencer) comb.n. , P. elgonensis (Spencer) comb.n. , P. eriodictyi (Spencer) comb.n. , P. flavida (Spencer) comb.n. , P. fricki (Griffiths) comb.n. , P. furcata (Griffiths) comb.n. , P. griffithsiana (Beiger) comb.n. , P. hoppiella (Spencer) comb.n. , P. ixeridopsis (Griffiths) comb.n. , P. kluanensis (Griffiths) comb.n. , P. leptargyreae (Griffiths) comb.n. , P. linnaeae (Griffiths) comb.n. , P. luzulivora (Spencer) comb.n. , P. mimuli (Spencer) comb.n. , P. mitchelli (Spencer) comb.n. , P. montella (Spencer) comb.n. , P. nigrilineata (Griffiths) comb.n. , P. nigrissima (Spencer) comb.n. , P. orbitella (Spencer) comb.n. , P. paraciliata (Godfray) comb.n. , P. poae (Griffiths) comb.n. , P. pseudomilii (Griffiths) comb.n. , P. qinghaiensis (Gu) comb.n. , P. rhaetica (Griffiths) comb.n. , P. scabiosella (Beiger) comb.n. , P. seneciophila (Spencer) comb.n. , P. shepherdiana (Griffiths) comb.n. , P. spenceriana (Griffiths) comb.n. , P. styriaca (Griffiths) comb.n. , P. subnigra (Spencer) comb.n. , P. suikazurae (Sasakawa) comb.n. , P. symphoricarpi (Griffiths) comb.n. , P. syngenesiae (Hardy) comb.n. , P. thermarum (Griffiths) comb.n. , P. torrentium (Griffiths) comb.n. and P. tschirnhausi (Griffiths) comb.n. Furthermore, we transfer all species of Napomyza to Phytomyza, resulting in the following new combinations: P. achilleanella (Tschirnhaus) comb.n. , P. acutiventris (Zlobin) comb.n. , P. angulata (Zlobin) comb.n. , P. arcticola (Spencer) comb.n. , P. bellidis (Griffiths) comb.n. , P. carotae (Spencer) comb.n. , P. cichorii (Spencer) comb.n. , P. curvipes (Zlobin) comb.n. , P. dubia (Zlobin) comb.n. , P. filipenduliphila (Zlobin) comb.n. , P. flavivertex (Zlobin) comb.n. , P. flavohumeralis (Zlobin) comb.n. , P. genualis (Zlobin) comb.n. , P. grandella (Spencer) comb.n. , P. humeralis (Zlobin) comb.n. , P. immanis (Spencer) comb.n. , P. immerita (Spencer) comb.n. , P. inquilina (Kock) comb.n. , P. kandybinae (Zlobin) comb.n. , P. lacustris (Zlobin) comb.n. , P. laterella (Zlobin) comb.n. , P. manni (Spencer) comb.n. , P. maritima (Tschirnhaus) comb.n. , P. merita (Zlobin) comb.n. , P. mimula (Spencer) comb.n. , P. minuta (Spencer) comb.n. , P. montanoides (Spencer) comb.n. , P. neglecta (Zlobin) comb.n. , P. nigriceps (van der Wulp) comb.n. , P. nugax (Spencer) comb.n. , P. pallens (Spencer) comb.n. , P. paratripolii (Chen & Wang) comb.n. , P. plumea (Spencer) comb.n. , P. plumigera (Zlobin) comb.n. , P. prima (Zlobin) comb.n. , P. pubescens (Zlobin) comb.n. , P. schusteri (Spencer) comb.n. , P. scrophulariae (Spencer) comb.n. , P. suda (Spencer) comb.n. , P. tanaitica (Zlobin) comb.n. , P. tenuifrons (Zlobin) comb.n. , P. vivida (Spencer) comb.n. , P. xizangensis (Chen & Wang) comb.n. and P. zimini (Zlobin) comb.n. Phytomyza asparagi (Hering) comb.n. and P. asparagivora (Spencer) comb.n. are transferred from Ptochomyza. In Phytomyza ten new names are proposed for secondary homonyms created by generic synonymy: P. echo Winkler nom.n. for P. manni Spencer, 1986; P. californiensis Winkler nom.n. for C. montana Spencer, 1981 ; P. griffithsella Winkler nom.n. for C. griffithsi Spencer, 1986; P. vockerothi Winkler nom.n. for C. nigrella Spencer, 1986; P. kerzhneri Winkler nom.n. for N. nigricoxa Zlobin, 1993; P. asteroides Winkler nom.n. for N. tripolii Spencer, 1966; P. minimoides Winkler nom.n. for N. minima Zlobin, 1994; P. nana Winkler nom.n. for N. minutissima Zlobin, 1994; P. ussuriensis Winkler nom.n. for N. mimica Zlobin, 1994 and P. zlobini Winkler nom.n. for N. hirta Zlobin, 1994.  相似文献   

2.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

3.
Six naturally occurring but rare alleles of sn-glycerol-3-phosphate dehydrogenase (Gpdh) in Drosophila melanogaster have been investigated in this study. They all belong to a class of Gpdh UF (ultra-fast) alleles, because their electrophoretic mobilities are faster than that of the Gpdh F (fast) allele. The Gpdh UF variants are widespread, and have been reported from five continents. DNA sequence analysis has shown that the change in electrophoretic mobility was in each allele caused by a single amino acid residue substitution in the encoded protein. In the Xiamen UF allele it is a substitution of lysine (AAA) to asparagine (AAT) in exon 1 (residue 3). An asparagine (AAT) to aspartate (GAT) change was found in exon 6 (residue 336) in the Iowa UF and Netherlands UF alleles. The mobility of the Raleigh UF allele was altered by a valine (GTG) to glutamate (GAG) substitution in exon 3 (residue 76). Two mutations were detected in the Brazzaville UF allele: a lysine (AAG) to methionine (ATG) substitution in exon 2 (residue 68) is responsible for the ultra-fast phenotype of this variant, while a tyrosine (TAT) to phenylalanine (TTT) substitution in exon 4 (residue 244) is not expected to alter the electrophoretic mobility of the encoded protein. These results indicate that the Gpdh UF alleles originate from different mutational events, and only two of them — Iowa UF and Netherlands UF — might share a common ancestry. The GPDH activity of the Iowa UF allele is intermediate between those of the Gpdh S and Gpdh F control stocks. The other Gpdh UF variants have lower activities than the controls: Xiamen UF -83%, Raleigh UF -80% and Brazzaville UF -73% of the Gpdh F control.  相似文献   

4.
The influence on the excess scattering function P(μ) of flutuations in the electron density ρ within a macromolecule is treated, to the approximation that the solvent is a structureless medium of constant electron density ρ0. The results for P(μ) and the apparent value of the mean square radius Rapp2, can be expressed as functions of the excess electron density Δρ: P(μ) = X(μ) + (Δρ)?1Y(μ) + (Δρ)?2Z(μ) and Rapp2 = Rx2 + (Δρ)?1Ry2 + (Δρ)?2Rz2, where X(μ) and Rx2 depend only on the shape of the macromolecule, while Y(μ) and Ry2 as well as Z(μ) and Rz2 depend on the shape and the fluctuations in ρ. By varying the electron density of the solvent, the contributions of the shape and the internal structure of the macromolecule can be resolved. The quantities Rx2, Ry2, and Rz2 are evaluated for seven models to illustrate the relative importance of these contributions for representative structures.  相似文献   

5.
The interest for lanthanide circularly polarized luminescence (CPL) has been quickly growing for 10 years. However, very few of these studies have involved correlation between the dissymmetry factor (glum) and the chemical modifications in a series of chiral ligands. Four polymeric compounds of Eu(III) were prepared by using a series of binaphtyl derivatives for which the size of the π system as well as the number of stereogenic elements (i.e., the binaphtyl moiety) are modulated. The resulting {[Eu(hfac)3((S)/(R)-Lx)]}n (x = 1 and 3) and {[Eu(hfac)3((S,S,S)/(R,R,R)-Lx)]}n (x = 2 and 4) have been characterized by powder X-ray diffraction by comparison with the X-ray structures on single crystal of the Dy(III) analogs. In solution, the structure of the complexes is deeply modified and becomes monomeric. The nature of the ligand induces change in the shape of the CPL spectra in CH2Cl2 solution. Furthermore, a large |glum| = 0.12 of the magnetic-dipole transition for the [Eu(hfac)3((S,S,S)/(R,R,R)-L2)] complex involving the ligand with three stereogenic elements and an extended ?? system has been measured. This report also shows CPL measurements in solid state for the series of {[Eu(hfac)3((S)/(R)-Lx)]}n (x = 1 and 3) and {[Eu(hfac)3((S,S,S)/(R,R,R)-Lx)]}n (x = 2 and 4) polymers.  相似文献   

6.
Nine fructo-oligosaccharides, synthesized in vitro from sucrose by an enzyme preparation from asparagus roots, were isolated and their structures were elucidated to be 1F (1-β-fructofuranosyl)n sucrose [n = 1 (1-kestose), 2 (nystose) and 3], 6G (1-β-fructofuranosyl)n sucrose [n=1 (neokestose), 2 and 3] and 1F (1-β-fructofuranosyl)m-6G (1-β-fructofuranosyl)n sucrose [m=1, n=1; m=2, n =1; and m =1, n=2]. These saccharides are all known to occur naturally in asparagus roots, but 6G (1-β-fructofuranosyl)3 sucrose and 1F (1-β-fructofuranosyl)m-6G-(1-β-fructofuranosyl)n sucrose (m=1, n =1; and m=1, n=2) were the first saccharides enzymatically synthesized in vitro. Also three types of fructosyltransferases were presumed to be involved in the biosynthesis of these oligosaccharides in asparagus roots.  相似文献   

7.
Acidic oligosaccharides were separated by dialysis, ion-exchange, preparative paper and gel chromatography from caprine colostrum. Four sialyl trisaccharides were characterized by 1H-NMR spectrometry as follows: α-N-acetylneuraminyl-(2,6)-β-d-galactopyranosyl-(1,4)-2-N-acetamido-2-deoxy-d-glucopyranose (Neu5Ac α 2-6Gal β 1-4GlcNAc), α-N-acetylneuraminyl-(2,3)-β-d-galactopyranosyl-(1,4)-d-glucopyranose (Neu5Ac α 2-3Gal β-1-4Glc), α-N-acetylneuraminyl-(2,6)-β-d-galactopyranosyl-(1,4)-d-glucopyranose (Neu5Ac α 2-6Gal β 1-4Glc) and α-N-glycolylneuraminyl-(2,6)-β-d-galactopyranosyl-(1,4)-d-glucopyranose (Neu5Gc α 2-6Gal β 1-4Glc).  相似文献   

8.
《Journal of bryology》2013,35(4):483-492
Abstract

141. Anomacaulis fiaccidus (Steph. 1917) Grolle c. n. has to replace A. hamatilobus (Grolle 1965) Schust. 142. Colura leratii (Steph. 1908) Steph. Has to replace C. apiculata Schiffn. ex Steph. 1916. 143. Herbertus sendtneri (Nees) Lindb. 1874 has to replace H. sendtneri (Nees) Evans 1917. 144. The redetected type of Herbertus stramineus (Dum.) Trev. in BR wholly justifies the recent usage of that name instead of H. aduncus auct. 145. The large styli of Jovetastella Tixier were misinterpreted as amphigastria. Jovetastella is reduced to subgeneric rank within Cololejeunea (Spruce) Schiffn., necessitating C. subg. Jovetastella (Tixier) Grolle n. st. et c. and C. paniensis (Tixier) Grolle c. n. 146. Lichenastrum Dill. 1811 is lectotypified with Jungermannia Ianceolata L. emend. Grolle, thus becoming a synonym of Jungermannia L. s. str. 147.Lophozia elongata Steph. has to replace L. elongata (Lindb. ex Kaal.) Steph. 148. Mannia triandra (Scop. 1772) Grolle c. n. has to replace M. rupestris (Nees 1817)Frye et Clark. A redetected type specimen of M archantia ludwigii Schwaegr. 1814 turned out to be Mannia triandra. Therefore Asterella gracilis (F. Web.) Underw. has to replace A. ludwigii auct. 149. Grimaldia chilensis Lindenb. ex Mont. 1839 was newly placed in synonymy of Sauteria berteroana Mont. 1839. 150. Telaranea nematodes (Gottsche ex Aust. 1879) Howe has to replace T. sejuncta auct., whereas the true T. sejuncta (Angstr. 1877) S. Arn. is a synonym of Arachniopsis diacantha (Mont. 1856) Howe. T. sejuncta yare breviseta (Herz.) Fulf. is still another species, thus the single record of T. nematodes or T. sejuncta from Juan Fernandez is rejected.  相似文献   

9.
Four new subgenera, nineteen new species, two new subspecies and two new varieties of Cyperus L. are described, viz. subgen. Aristomariscus Lye, subgen. Bulbomariscus Lye, subgen. Xerocyperus Lye, subgen. Micromariscus Lye, Cyperus micromariscus Lye, C. boreochrysocephalus Lye, C. crassivaginatus Lye, C. kyllingaeformis Lye, C. cremeomariscus Lye, C. gigantobulbes Lye, C. boreobellus Lye, C. longi–involucralus Lye, C. kwaleensis Lye, C. afrovaricus Lye, C. afrodunensis Lye, C flavoculmis Lye, C microumbellatus Lye, C. purpureoviridis Lye, C. graciliculmis Lye, C. afromon–tanus Lye, C. nyererei Lye, C. afroalpinus Lye, C castaneobellus Lye, C. soyauxii Boeck. ssp. pallescens Lye, C. usitatus Burch. ssp. palmatus Lye, C. renschii Boeck. var. scabridus Lye, and C. fischerianus A. Rich. var. ugandensis Lye. The following new combinations are made: Cyperus L. subgen. Bulbocaulis (C.B.C1.) Lye, Cyperus L. subgen. Courtoisia (Nees) Lye, Cyperus L. subgen. Sorostachys (Steudel) Lye, Cyperus L. subgen. Remirea (Aublet) Lye, Cyperus L. subgen. Alinula (Raynal) Lye, Cyperus lipocarphoides (Kükenth.) Lye, C. malawicus (Raynal) Lye, C. tanganyica–nus (Kiikenth.) Lye, C. mortonii (Hooper) Lye, C. pseudodiaphanus (Hooper) Lye, C. overlaetii (Hooper & Raynal) Lye, C. dewildeorum (Raynal) Lye, C. pagotii (Raynal) Lye, C. demangei (Raynal) Lye, C. afroechinatus Lye, C. niveus Retz. var. ledermannii (Kiikenth.) Lye, C. niveus Retz. var. tisserantii (Cherm.) Lye, C. distans L.f. ssp. longibracteatus (Cherm.) Lye, C. distans L.f. ssp. longibracteatus (Cherm.) Lye, var. rubrotinctus (Cherm.) Lye, C. cyperoides (L.) Kuntze ssp. alternifolius (Vahl) Lye, C. cyperoides (L.) Kuntze ssp. macrocarpus (Kunth) Lye, C. cyperoides (L.) Kuntze ssp. pseudoflavus (Clarke) Lye, C. dubius Rottb. ssp. macrocephalus (Kiikenth.) Lye, C. dubius Rottb. ssp. coloratus (Vahl) Lye, C. usitatus Burch. var. stuhlmannii (Clarke) Lye, C. laxus Lam. ssp. sylvestris (Ridley) Lye, and C. laxus Lam. ssp. buchholzii (Boeck.) Lye and C. globifer (Clarke) Lye.  相似文献   

10.
We used chloroplast DNA restriction site analysis to test hypotheses of relationships of Solarium subgenus Potatoe (including potatoes and pepinos), two other Solanum, Cyphomandra (the tree tomatoes), and Lycopersicon (the tomatoes). Capsicum and Datura were used as outgroups. The results support two main clades among the taxa we studied: 1) Solanum subgenus Potatoe and Lycopersicon; and 2) other Solanum and Cyphomandra. Within the first clade, the following groups were supported: a) sect. Basarthrum and sect. Anarrhichomenum; b) sect. Etuberosum; c) sect. Petota; d) sect. Juglandifolium, including subsect. Lycopersicoides; and e) the genus Lycopersicon. These results, in combination with an analysis of morphological data, advocate the controversial, but previously suggested, treatment of Lycopersicon as congeneric with Solanum in subgenus Potatoe. Thus, the cultivated tomato will be recognized as Solanum lycopersicum L. Solanum chmielewskii and Solanum lycopersicum var. cerasiforme are proposed as new combinations; Solanum neorickii is proposed as a new name for Lycopersicon parviflorum. Our data also suggest that Cyphomandra should be included within Solanum.  相似文献   

11.
To evaluate the sectional classification in Carex, subgenus Carex, the ITS region of 117 species belonging to 32 sections was analyzed with Neighbor Joining (NJ) and Markov chain Monte Carlo (MCMC) methods. In our analyses (1) species of subgenus Indocarex appear as a statistically well supported group within subgenus Carex. (2) The representatives of sections Vesicariae, Hirtae, Pseudocypereae, Ceratocystis, Spirostachyae, Bicolores, Paniceae, Trachychlaenae, Scirpinae, Atratae and Albae group in statistically supported clades with higher support in MCMC than in NJ. (3) C. rariflora clusters with representatives of section Limosae, however only weakly supported. (4) Taxa of section Phacocystis are divided in two statistically supported subclusters that are closely related to a core group of section Hymenochlaenae. (5) Species of sections Montanae, Pachystylae, Digitatae, Phacocystis, Rhomboidales, Careyanae and Frigidae are segregated into two or more clusters each. (6) Five species of section Frigidae cluster together, whereas the seven others are in scattered positions. Based on these results, delimitation of sections is discussed.  相似文献   

12.
This work presents the biocidal (insecticidal, ixodicidal, nematicidal, and phytotoxic) effects and chemical compositions of three essential oils obtained from the industrial steam distillation (IEOs) of hyssop (Hyssopus officinalis L.), lavandin (Lavandula × intermedia or L. × hybrida var. Super ), and cotton lavender (Santolina chamaecyparissus L.). Their chemical composition analyzed by gas chromatography coupled to mass spectrometry showed 1,8‐cineole (53%) and β‐pinene (16%) as the major components of H. officinalis, linalyl acetate (38%) and linalool (29%) of L. × intermedia; and 1,8‐cineole (10%) and 8‐methylene‐3‐oxatricyclo[5.2.0.02,4]nonane (8%) in S. chamaecyparissus. The biocidal tests showed that L. × intermedia IEO was the most active against the insect Spodoptera littoralis and toxic to the tick Hyalomma lusitanicum, IEO of H. officinalis was strongly active against S. littoralis, and finally, S. chamaecyparissus IEO was a strong antifeedant against the aphid Rhopalosiphum padi, toxic to H. lusitanicum and with moderate effects against Leptinotarsa decemlineata, S. littoralis, and Lolium perenne.  相似文献   

13.
Summary

Saxifraga rosacea is recorded and Poa scotica described new to Scotland. The position of segregate taxa or breeding units within several species complexes is clarified within Scotland: (a) the hexaploid cytotype within the mostly tetraploid Campanula rotundifolia; (b) diploid Hedera helix and tetraploid H. hibernica;, (c) diploid and tetraploid Deschampsia cespitosa, D. alpina and D. parviflora; (d) octoploid sub-species scotica within usually hexaploid Festuca rubra; (e) an octoploid mountain Agrostis; (f) fertile hexaploid Potentilla anserina; (g) an approximately triploid aneuploid Vaccinium uliginosum ssp. microphyllum.  相似文献   

14.
    
Summary The hybrid produced between a Carbondale haploid strain (-methyl-glucoside rapid fermenter) and a haploid strain (non-fermenter), derived from a hybrid between a homothallic and a heterothallicSaccharomyces, showed an irregular segregation pattern with regard to the fermentation of this sugar.To explain this irregularity, three pairs of alleles,MG 1/mg 1,MG 2/mg 2 andMG 3/mg 3, were assumed to be in quantitative control of the fermetation. Haploid cultures carrying the genotypes (1)mg 1 mg 2 mg 3, (2)MG 1 mg 2 mg 3, (3)mg 1 MG 2 mg 3, (4)mg 1 mg 2 MG 3, (5)MG 1 MG 2 mg 3, (6)MG 1 mg 2 MG 3, (7)mg 1 MG 2 MG 3, and (8)MG 1 MG 2 MG 3, were actually recovered. Strains equipped with: either (1) or (2); either (4) or (6); (3); (5); (7); or (8) are non-fermenters, extremely-slow-fermenters, slow-fermenters, medium-fermenters, semi-rapid-fermenters and rapid-fermenters respectively.The role of these genes in sugar fermentation and the identity or nonidentity of some of these genes with maltose and sucrose genes was discussed.With 2 Figures in the Text  相似文献   

15.
Dang H  Ren J  Song L  Sun S  An L 《Microbial ecology》2008,55(2):237-246
Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)–(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Abstract The scale insect tribe Iceryini (Coccoidea: Monophlebidae) is a group of relatively large and polyphagous insects found worldwide. Currently, the tribe contains about 80 named species placed in seven genera, which are diagnosed largely on features associated with egg protection. We reconstruct the phylogeny of the Iceryini on the basis of nucleotide sequence data from nuclear ribosomal (18S and D2, D3 and D10 regions of 28S) and protein‐coding (histone H3) gene regions of 40 iceryine species representing six of the seven genera and seven outgroup taxa, mostly from two other tribes of Monophlebidae. Bayesian and maximum parsimony analyses recover a monophyletic tribe and clades that correspond more to geography than to the existing morphology‐based classification. Gueriniella Fernald is sister to the rest of the Iceryini and the genera Crypticerya Cockerell, Icerya Signoret and Steatococcus Ferris are not monophyletic. Our data imply that the distinctive iceryine reproductive strategies, such as protecting eggs in a waxy ovisac or inside a marsupium, are poor indicators of relationships. On the basis of molecular relationships and the re‐examination of morphological characters, we recognize only five genera of Iceryini –Crypticerya, Echinicerya Morrison, Gigantococcus Pesson & Bielenin, Gueriniella and Icerya – and substantially revise the generic concepts of Crypticerya, Gigantococcus and Icerya. We provide a key to the genera based on adult females. We redescribe and illustrate the adult female and first‐instar nymph of the type species Crypticerya rosae (Riley & Howard), Echinicerya anomala Morrison, Gigantococcus maximus (Newstead) (adult female only), Gueriniella serratulae (Fabricius) and Icerya seychellarum (Westwood). We recognize Auloicerya Morrison as a junior synonym ( syn.n. ) of Icerya, and transfer the two Auloicerya species to Icerya as I. acaciae (Morrison & Morrison) comb.n. and I. australis Maskell comb.rev. We recognize Steatococcus and Proticerya Cockerell as junior synonyms ( syn.n. ) of Crypticerya. From Steatococcus, we transfer five species to Crypticerya [C. mexicana Cockerell & Parrott comb.rev. , C. morrilli (Cockerell) comb.n. , C. tabernicola (Ferris) comb.n. , C. townsendi Cockerell comb.rev. , C. tuberculata (Morrison) comb.n. ], four species to Gigantococcus [Gi. euphorbiae (Brain) comb.n. , Gi. gowdeyi (Newstead) comb.n. , Gi. madagascariensis (Mamet) comb.n. , Gi. theobromae (Newstead) comb.n. ] and three species to Icerya [I. assamensis (Rao) comb.n. , I nudata Maskell comb.rev. , I. samaraia (Morrison) comb.n. ]. From Icerya, we transfer 14 species to Crypticerya [C. brasiliensis (Hempel) comb.n. , C. colimensis (Cockerell) comb.n. , C. flava (Hempel) comb.n. , C. flocculosa (Hempel) comb.n. , C. genistae (Hempel) comb.n. , C. littoralis (Cockerell) comb.n. , C. luederwaldti (Hempel) comb.n. , C. minima (Morrison) comb.n. , C. montserratensis (Riley & Howard) comb.n. , C. palmeri (Riley & Howard) comb.n. , C. rileyi (Cockerell) comb.n. , C. similis (Morrison) comb.n. , C. subandina (Leonardi) comb.n. , C. zeteki (Cockerell) comb.n. ] and nine species to Gigantococcus [Gi. alboluteus (Cockerell) comb.n. , Gi. bimaculatus (De Lotto) comb.n. , Gi. brachystegiae (Hall) comb.n. , Gi. longisetosus (Newstead) comb.n. , Gi. nigroareolatus (Newstead) comb.n. , Gi. pattersoni (Newstead) comb.n. , Gi. schoutedeni (Vayssière) comb.n. , Gi. splendidus (Lindinger) comb.n. , Gi. sulfureus (Lindinger) comb.n. ]. From Crypticerya, we transfer seven species to Icerya [I. clauseni (Rao) comb.n. , I. jacobsoni Green comb.rev. , I. jaihind (Rao) comb.n. , I. kumari (Rao) comb.n. , I. mangiferae (Tang & Hao) comb.n. , I. natalensis (Douglas) comb.rev. , I. nuda Green comb.rev. ] and five species to Gigantococcus [Gi. bicolor (Newstead) comb.n. , Gi. cajani (Newstead) comb.n. , Gi. caudatus (Newstead) comb.n. , Gi. ewarti (Newstead) comb.n. , Gi. rodriguesi (Castel‐Branco) comb.n. ]. Both I. hyperici (Froggatt) and Palaeococcus dymocki (Froggatt) are syn.n. of I. nudata (all previously placed in Steatococcus). We recognize I. maynei Vayssière as a syn.n. of Gi. nigroareolatus, I. tremae Vayssière as a syn.n. of Gi. schoutedeni and I. townsendi plucheae Cockerell as a syn.n. of C. townsendi. We revalidate the species name I. crocea Green stat.reval. In addition, we transfer I. taunayi Hempel to Laurencella Foldi (Monophlebidae: Llaveiini) as L. taunayi (Hempel) comb.n. Four species, Coccus hirticornis Boyer de Fonscolombe, I. chilensis Hempel, I. insulans Hempel and I. paulista Hempel, are considered incertae sedis. We designate lectotypes for C. rosae, E. anomala and I. candida (a junior synonym of I. seychellarum). Following this revision, we recognize 74 species of Iceryini, distributed as follows: 22 in Crypticerya, one in Echinicerya, 19 in Gigantococcus, two in Gueriniella and 30 in Icerya.  相似文献   

17.
Summary We transformed B. subtilis 168 with DNA from B. subtilis IAM1231, IAM1192 and ATCC6633. When we examined the restriction activities of the transformants in vivo and in vitro using phage 105C we found the following: (1) Cells of either IAM1231 or IAM1192 have two modification and restriction systems (Bsu1231(1)-system and Bsu1231(II)-system in IAM1231, and Bsu1192(I)-system and Bsu1192(II)-systems in IAM1192), and cells of ATCC6633 have only one system (Bsu6633-system). (2) The restriction enzymes of all of these five systems are site-specific endonucleases. (3) The nucleotide sequence specificities of the enzymes involved in Bsu1231(I)-system, Bsu1192(I)-system and Bsu6633-system are the same; and those of Bsu1231(II)-system and Bsu1192(II)-system are the same. The sequence specificities of these two groups are different from each other and also different from those of the Bsu168-system of B. subtilis 168, the BsuR-system of B. subtilis R and the Bsu1247(I)-and Bsu1247(II)-systems which are systems of B. subtilis IAM1247. (4) Transformants possessing four different modification and restriction systems (Bsu1231(I)-, Bsu1247(I)-, BsuR- and Bsu168-systems) were constructed. (5) Transformation of two derivatives of 168 that were m R + r R + by DNA from IAM1231 produced 16 transformants that had the Bsu1231(II) restriction system, but had lost the BsuR system. Transformation of a derivative of 168 that was m 1247(II) + r 1247(II) + by DNA from m 1231(II) + r 1231(II) + -or m R + r R + -derivative of 168 produced about 100 each of transformants that had the Bsu1231(II)-restriction system or the BsuR-restriction system. But all these transformants lost the Bsu1247(II)-system.  相似文献   

18.
19.
Summary The mutagen-sensitive mutant mus(1)104 D1 of Drosophila melanogaster maps to a position on the X chromosome very close to the meiotic mutant mei-41 D5 . Both mutants have been characterized as mutagen-sensitive and defective in post-replication repair. In the present report we show by complementation studies that mus(1)104 and mus(1)103 are allelic with mei-41. In addition, two reported alleles of mus(1)104 lie between the mei-41 alleles A10 and D5. The size of the mei-41 locus is estimated to be about 0.1 centimorgans (cM). Because several alleles of mei-41 have been shown to reduce recombination and increase meiotic chromosome loss and nondisjunction, mus(1)104 D1 females were examined for defects in meiosis. Although there was no evidence for reduced recombination on the second chromosome in homozygous mus(1)104 D1 females, heterozygous mus(1)104 D1 /mei-41 >D5 and mus(1)104 D1 /deficiency females showed reduced levels of recombination. However, there was no evidence of an increase in nondijunction in these females.We dedicate this article to the memory of Larry Sandler, who passed away suddenly on February 7, 1987  相似文献   

20.
The purpose of this work was to elucidate the genetic fine structure of the central portion of mouse chromosome (Chr) 2. Seven Chr 2 congenic mouse strains [B10.PA(L)-pa we un a t , B10.PA(L)-pa A w , B10.PA(L)-we un a t , B10.PA(J)-pa a, B10.FS-we A w , B10.C-we A w , and B10.YBR-a] were produced. Breeding studies were carried out using strains B10.PA(L)-pa we un a t and B10.LP-H-13 b to accurately determine the recombination frequencies between marker genes pa and we (1.9%±0.3), we and un (8.8%±0.5), and un and a t (4.5%±0.4) of strain B10.PA(L)-pa we un a t . These strains and other Chr 2 congenic strains were typed for immunologically defined loci using monoclonal antibody (mAb) C23 reactive with the gene product of B2m b T-lymphocyte clone C1 reactive with the gene product of H-3 a and H-3 c , and lymphocyte clone H1.8 reactive with the gene product of Hd-1 a . B2m and H-3 typing located a recombinational event separating [pa B2m H-3] from we (the order of bracketed genes is not known). Hd-1 typing indicated that Hd-1 maps distal to [H-42, H-44] and proximal to un. The gene order [pa, B2m, H-3], we, [H-42, H-45], Hd-1, un, H-13, a t , with H-44 mapping centromeric to Hd-1, is indicated by the data. Address correspondence and offprint requests to: R. J. Graff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号