首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of beta-adrenoreceptors induces cardiomyocyte hypertrophy. In the present study, we examined isoproterenol-evoked intracellular signal transduction pathways leading to activation of extracellular signal-regulated kinases (ERKs) and cardiomyocyte hypertrophy. Inhibitors for cAMP and protein kinase A (PKA) abolished isoproterenol-evoked ERK activation, suggesting that Gs protein is involved in the activation. Inhibition of Gi protein by pertussis toxin, however, also suppressed isoproterenol-induced ERK activation. Overexpression of the Gbetagamma subunit binding domain of the beta-adrenoreceptor kinase 1 and of COOH-terminal Src kinase, which inhibit functions of Gbetagamma and the Src family tyrosine kinases, respectively, also inhibited isoproterenol-induced ERK activation. Overexpression of dominant-negative mutants of Ras and Raf-1 kinase and of the beta-adrenoreceptor mutant that lacks phosphorylation sites by PKA abolished isoproterenol-stimulated ERK activation. The isoproterenol-induced increase in protein synthesis was also suppressed by inhibitors for PKA, Gi, tyrosine kinases, or Ras. These results suggest that isoproterenol induces ERK activation and cardiomyocyte hypertrophy through two different G proteins, Gs and Gi. cAMP-dependent PKA activation through Gs may phosphorylate the beta-adrenoreceptor, leading to coupling of the receptor from Gs to Gi. Activation of Gi activates ERKs through Gbetagamma, Src family tyrosine kinases, Ras, and Raf-1 kinase.  相似文献   

2.
The enteric nervous system (ENS) develops from neural crest cells that enter the gut, migrate, proliferate, and differentiate into neurons and glia. The growth factor glial‐derived neurotrophic factor (GDNF) stimulates the proliferation and survival of enteric crest‐derived cells. We investigated the intracellular signaling pathways activated by GDNF and their involvement in proliferation. We found that GDNF stimulates the phosphorylation of both the PI 3‐kinase downstream substrate Akt and the MAP kinase substrate ERK in cultures of immunoaffinity‐purified embryonic avian enteric crest‐derived cells. The selective PI 3‐kinase inhibitor LY‐294002 blocked GDNF‐stimulated Akt phosphorylation in purified crest cells, and reduced proliferation in cultures of dissociated quail gut. The ERK kinase (MEK) inhibitors PD 98059 and UO126 did not reduce GDNF‐stimulated proliferation, although PD 98059 blocked GDNF‐stimulated phosphorylation of ERK. We conclude that the PI 3‐kinase pathway is necessary for the GDNF‐stimulated proliferation of enteric neuroblasts. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 306–317, 2001  相似文献   

3.
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13‐dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP‐9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation‐induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu‐induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)‐inhibited PDBu‐induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP‐9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu‐induced podosomes by influencing the recruitment of PKCζ and MMP‐9 to podosomes. J. Cell. Physiol. 228: 416–427, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
7.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) is required for the growth of oligodendrocytes, although the underlying mechanisms are not fully understood. Our aim was to investigate the role of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase kinase (MEK1), and Src family tyrosine kinases in IGF-I-stimulated proliferation of oligodendrocyte progenitors. IGF-I treatment increased the proliferation of cultured oligodendrocyte progenitors as determined by measuring incorporation of [(3)H]-thymidine and bromodeoxy-uridine (BrdU). IGF-I stimulated a transient phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK1) and extracellular signal-regulated kinases (ERK1/2) (targets of MEK1), as well as a rapid and sustained activation of Akt (a target of PI3K). Furthermore, inhibitors of PI3K (LY294002 and Wortmannin), MEK1 (PD98059 and U0126), and Src family tyrosine kinases (PP2) decreased IGF-I-induced proliferation, and blocked ERK1/2 activation. LY294002, Wortmannin and PP2 also blocked Akt activation. To further determine whether Akt is required for IGF-I stimulated oligodendrocyte progenitor proliferation, cultures were infected with adenovirus vectors expressing dominant-negative mutants of Akt or treated with pharmacological inhibitors of Akt. All treatments reduced IGF-I-induced oligodendrocyte progenitor proliferation. Our data indicate that stimulation of oligodendrocyte progenitor proliferation by IGF-I requires Src-like tyrosine kinases as well as the PI3K/Akt and MEK1/ERK signaling pathways.  相似文献   

9.
Melanosome movement represents a good model of cytoskeleton‐mediated transport of organelles in eukaryotic cells. We recently observed that inhibiting nitric oxide synthase (NOS) with Nω‐nitro‐l ‐arginine methyl ester (l ‐NAME) induced dispersion in melanophores pre‐aggregated with melatonin. Activation of cyclic adenosine 3′,5′‐monophosphate (cAMP)‐dependent protein kinase (PKA) or calcium‐dependent protein kinase (PKC) is known to cause dispersion. Also, PKC and NO have been shown to regulate the mitogen/extracellular signal‐regulated kinase (MEK)‐ERK pathway. Accordingly, our objective was to further characterize the signaling pathway of l ‐NAME‐induced dispersion. We found that the dispersion was decreased by staurosporine and PD98059, which respectively inhibit PKC and MEK, but not by the PKA inhibitor H89. Furthermore, Western blotting revealed that ERK1 kinase was phosphorylated in l ‐NAME‐dispersed melanophores. l ‐NAME also caused dispersion in latrunculin‐B‐treated cells, suggesting that this effect is not due to inhibition of the melatonin signaling pathway. Summarizing, we observed that PKC and MEK inhibitors decreased the l ‐NAME‐induced dispersion, which caused phosphorylation of ERK1. Our results also suggest that NO is a negative regulator of phosphorylations that leads to organelle transport.  相似文献   

10.
Capacitation is an essential process by which spermatozoa acquire fertilizing ability. Reactive oxygen species (ROS), protein kinase A (PKA), protein kinase C (PKC), protein tyrosine kinases (PTKs), and the extracellular signal-regulated protein kinase (ERK or mitogen-activated protein kinase [MAPK]) pathway regulate sperm capacitation. Our aim was to evaluate the phosphorylation of MEK (MAPK kinase or MAP2K) or MEK-like proteins in human sperm capacitation and its modulation by ROS and kinases. Immunoblotting using an anti-phospho-MEK antibody indicated that the phosphorylation of three protein bands (55, 94, and 115 kDa) increased in spermatozoa treated with fetal cord serum ultrafiltrate (FCSu), BSA, or isobutylmethylxanthine plus dibutyryl cAMP as capacitating agents. These phospho-MEK-like proteins are localized along the sperm flagellum. The MEK-inhibitors PD98059 and U126 prevented this phosphorylation, suggesting that these proteins are MEK-like proteins. The ROS scavengers prevented, and the addition of H(2)O(2) or spermine-NONOate (nitric oxide donor) triggered, the increase of phospho-MEK-like proteins. The capacitation-related increases in phospho-MEK-like proteins induced by FCSu, H(2)O(2), and spermine-NONOate were similarly modulated by PKA, PKC, and PTK, suggesting ROS as mediators in this phenomenon. These results indicate that phospho-MEK-like proteins are modulated by ROS and kinases and probably represent an intermediary step between the early events and the late tyrosine phosphorylation associated with capacitation.  相似文献   

11.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

12.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   

13.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

14.
cAMP‐dependent, PKA‐independent effects on cell proliferation are mediated by cAMP binding to EPAC and activation of Rap signaling. In this report, we employed the analogue 8‐CPT‐2‐O‐Me‐cAMP to study binding to EPAC and subsequent activation of B‐Raf/ERK and mTOR signaling in human cancer cells. This compound significantly stimulated DNA synthesis, protein synthesis, and cellular proliferation of human 1‐LN prostate cancer cells. By study of phosphorylation‐dependent activation, we demonstrate that EPAC‐mediated cellular effects require activation of the B‐Raf/ERK and mTOR signaling cascades. RNAi directed against EPAC gene expression as well as inhibitors of ERK, PI 3‐kinase, and mTOR were employed to further demonstrate the role of these pathways in regulating prostate cancer cell proliferation. These studies were then extended to several other human prostate cancer cell lines and melanoma cells with comparable results. We conclude that B‐Raf/ERK and mTOR signaling play an essential role in cAMP‐dependent, but PKA‐independent, proliferation of cancer cells. J. Cell. Biochem. 108: 998–1011, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
In cells from the adrenal medulla, angiotensin II (AII) regulates both the activity and mRNA levels of catecholamine biosynthetic enzymes whose expression is thought to be under the control of cAMP-responsive element (CRE) binding protein (CREB). In this study, we evaluated the effect of AII stimulation on CREB phosphorylation at Ser133 (pCREB) in bovine adrenal chromaffin cells (BACC). We found that AII produces a rapid and AII type-1 receptor (AT1)-dependent increase in pCREB levels, which is blocked by the MEK1/2 inhibitor U0126 but not by H-89, SB203580 or KN-93, suggesting that it is mediated by the extracellular-regulated protein kinases 1 and 2 (ERK1/2) and not by cAMP-dependent protein kinase (PKA), p38 mitogen-activated protein kinase (p38MAPK) or Ca(2+)/calmodulin-dependent protein kinases (CaMKs) dependent pathways. Gel-shift experiments showed that the increase in pCREB levels is accompanied by an ERK1/2-dependent upregulation of CRE-binding activity. We also found that AII promotes a rapid and reversible increase in the activity of the non-receptor tyrosine kinase Src and that the inhibition of this enzyme completely blocks the AII-induced phosphorylation of ERK1/2, the CREB kinase (p90)RSK and CREB. Our data support the hypothesis that in BACC, AII upregulates CREB functionality through a mechanism that requires Src-mediated activation of ERK 1/2 and (p90)RSK.  相似文献   

17.
Previously, we have shown that leptin potentiates the antiproliferative action of cAMP elevating agents in breast cancer cells and that the protein kinase A (PKA) inhibitor KT‐5720 prevented the antiproliferative effects induced by the leptin plus cAMP elevation. The present experiments were designed to gain a better understanding about the PKA role in the antitumor interaction between leptin and cAMP elevating agents and on the underlying signaling pathways. Here we show that exposure of MDA‐MB‐231 breast cancer cells to leptin resulted in a strong phosphorylation of both ERK1/2 and STAT3. Interestingly, intracellular cAMP elevation upon forskolin pretreatment completely abrogated both ERK1/2 and STAT3 phosphorylation in response to leptin and was accompanied by a consistent CREB phosphorylation. Notably, leptin plus forskolin cotreatments resulted in a strong decrease of both PKA regulatory RIα and catalytic subunits protein levels. Importantly, pretreatment with the PKA inhibitor KT‐5720 blocked the forskolin‐induced CREB phosphorylation and prevented both the inhibition by forskolin of leptin‐induced ERK1/2 and STAT3 phosphorylation and the PKA subunits down‐regulation induced by the combination of leptin and forskolin. Altogether, our results indicate that leptin‐dependent signaling pathways are influenced by cAMP elevation and identify PKA as relevantly involved in the pharmacological antitumor interaction between leptin and cAMP elevating drugs in MDA‐MB‐231 cells. We propose a molecular model by which PKA confers its effects. Potential therapeutic applications by our data will be discussed. J. Cell. Physiol. 225: 801–809, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
β-Adrenergic receptors can activate extracellular signal-regulated kinases (ERKs) via different mechanisms. In this study, we investigated the molecular mechanism of β1-adrenergic receptor (β1AR)-mediated ERK activation in African green monkey kidney COS-7 cells. Treatment of cells with isoproterenol (ISO), a β1AR selective agonist, induced phosphorylation of ERK1/2 in a dose-dependent manner. ISO-stimulated ERK phosphorylation was not influenced by the Gβγ inhibitor, βAR kinase carboxyl terminal (βARKct) or by the Gi inhibitor, pertussis toxin (PTX), but it was clearly abolished via inhibition of protein kinase A (PKA) with H89, or of mitogen-activated protein kinase kinase (MEK1) with PD98059, revealing that the Gαs subunit is involved in ERK regulation through the PKA/MEK1 pathway. We also tested the effect of the adenylate cyclase activator forskolin on ERK activation, and the result was identical to that of ISO stimulation. Moreover, pretreatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 or with the Src tyrosine kinase inhibitor PP2 did not affect ERK activation. These observations suggest a mechanism of β1AR-mediated ERK activity that involves the Gαs subunit, but not EGFR or Src tyrosine kinase.  相似文献   

19.
To examine signaling mechanisms relevant to cAMP/protein kinase A (PKA)-dependent endothelial cell barrier regulation, we investigated the impact of the cAMP/PKA inhibitors Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS) and PKA inhibitor (PKI) on bovine pulmonary artery and bovine lung microvascular endothelial cell cytoskeleton reorganization. Rp-cAMPS as well as PKI significantly increased the formation of actin stress fibers and intercellular gaps but did not alter myosin light chain (MLC) phosphorylation, suggesting that the Rp-cAMPS-induced contractile phenotype evolves in an MLC-independent fashion. We next examined the role of extracellular signal-regulated kinases (ERKs) in Rp-cAMPS- and PKI-induced actin rearrangement. The activities of both ERK1/2 and its upstream activator Raf-1 were transiently enhanced by Rp-cAMPS and linked to the phosphorylation of the well-known ERK cytoskeletal target caldesmon. Inhibition of the Raf-1 target ERK kinase (MEK) either attenuated or abolished Rp-cAMPS- and PKI-induced ERK activation, caldesmon phosphorylation, and stress fiber formation. In summary, our data elucidate the involvement of the p42/44 ERK pathway in cytoskeletal rearrangement evoked by reductions in PKA activity and suggest the involvement of significant cross talk between cAMP- and ERK-dependent signaling pathways in endothelial cell cytoskeletal organization and barrier regulation.  相似文献   

20.
Cannabinoids activate several members of the mitogen-activated protein kinase superfamily including p44 and p42 extracellular signal-regulated kinase (ERK). We used N1E-115 neuroblastoma cells and the cannabinoid receptor agonist WIN 55,212-2 (WIN) to examine the signal transduction pathways leading to the activation of ERK. ERK phosphorylation (activation) was measured by Western blot. The EC50 for stimulation of ERK phosphorylation was 10 nm, and this effect was blocked by pertussis toxin and the CB1 (cannabinoid) receptor antagonist SR141716A. The MEK inhibitors PD 98059 and U0126 blocked ERK phosphorylation, as did the adenylate cyclase activator forskolin. The phosphatidylinositol (PI) 3-kinase inhibitor LY 294002 and the Src kinase inhibitor PP2 partially occluded the response but also decreased basal levels of phospho-ERK. The PI 3-kinase and Src pathways are known to promote cell survival in many systems; therefore, MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) conversion was used to examine the effects of these inhibitors on cellular viability. LY 294002 decreased the number of viable cells after 18 h of treatment; therefore, the inhibition of ERK by this inhibitor is probably because of cytotoxicity. Forskolin blocked ERK phosphorylation with an EC50 of <3 microm, and the protein kinase A (PKA) inhibitor H-89 enhanced ERK phosphorylation. c-Raf phosphorylation at an inhibitory PKA-regulated site (Ser259) was also reduced by WIN. This is probably due to constitutive phosphatase activity because WIN did not directly stimulate PP1 or PP2A activity when measured using 6,8-difluoro-4-methylumbelliferyl phosphate as a fluorogenic substrate. These data implicate the inhibition of PKA as the predominant pathway for ERK activation by CB1 receptors in N1E-115 cells. PI 3-kinase and Src appear to contribute to ERK activation by maintaining activation of kinases, which prime the pathway and maintain cellular viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号