首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although μ, κ, and δ opioids activate extracellular signal‐regulated kinase (ERK)/mitogen‐activated protein (MAP) kinase, the mechanisms involved in their signaling pathways and the cellular responses that ensue differ. Here we focused on the mechanisms by which μ opioids rapidly (min) activate ERK and their slower (h) actions to inhibit epidermal growth factor (EGF)‐induced ERK‐mediated astrocyte proliferation. The μ‐opioid agonists ([d‐ ala2, mephe4, gly‐ol5] enkephalin and morphine) promoted the phosphorylation of ERK/MAP kinase within 5 min via Gi/o protein, calmodulin (CaM), and β‐arrestin2‐dependent signaling pathways in immortalized and primary astrocytes. This was based on the attenuation of the μ‐opioid activation of ERK by pertussis toxin (PTX), the CaM antagonist, W‐7, and siRNA silencing of β‐arrestin2. All three pathways were shown to activate ERK via an EGF receptor transactivation‐mediated mechanism. This was disclosed by abolishment of μ‐opioid‐induced ERK phosphorylation with the EGF receptor‐specific tyrosine phosphorylation inhibitor, AG1478, and μ‐opioid‐induced reduction of EGF receptor tyrosine phosphorylation by PTX, and β‐arrestin2 targeting siRNA in the present studies and formerly by CaM antisense. Long‐term (h) treatment of primary astrocytes with [d ‐ala2,mephe4,gly‐ol5] enkephalin or morphine, attenuated EGF‐induced ERK phosphorylation and proliferation (as measured by 5′‐bromo‐2′‐deoxy‐uridine labeling). PTX and β‐arrestin2 siRNA but not W‐7 reversed the μ‐opioid inhibition. Unexpectedly, β‐arrestin‐2 siRNA diminished both EGF‐induced ERK activation and primary astrocyte proliferation suggesting that this adaptor protein plays a novel role in EGF signaling as well as in the opioid receptor phase of this pathway. The results lend insight into the integration of the different μ‐opioid signaling pathways to ERK and their cellular responses.  相似文献   

2.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

3.
β‐Arrestins are multifunctional adaptor proteins. Recently, some new roles of β‐arrestins in regulating intracellular signaling networks have been discovered, which regulate cell growth, proliferation, and apoptosis. Though, the role of β‐arrestins expression in the pathology of hepatic fibrosis remains unclear. In this study, the possible relationship between the expression of β‐arrestins with the experimental hepatic fibrosis and the proliferation of hepatic stellate cells (HSCs) were investigated. Porcine serum induced liver fibrosis was established in this study. At five time points, the dynamic expression of β‐arrestin1, β‐arrestin2, and α‐smooth muscle actin (α‐SMA) in rat liver tissues, was measured by immunohistochemical staining, double immunofluorescent staining, and Western blotting. This study showed that aggravation of hepatic fibrosis with gradually increasing expression of β‐arrestin2 in the hepatic tissues, but not β‐arrestin1. Further, as hepatic fibrosis worsens, β‐arrestin2‐expressing activated HSCs accounts for an increasingly larger percentage of all activated HSCs. And the expression of β‐arrestin2 had a significant positive correlation with the expression of α‐SMA, an activated HSCs marker. In vitro studies, the dynamic expression of β‐arrestin1 and β‐arrestin2 in platelet derived growth factor‐BB (PDGF‐BB) stimulated HSCs was assessed by Western blotting. The expression of β‐arrestin2 was remarkably increased in PDGF‐BB stimulated HSCs. Furthermore, the small interfering RNA (siRNA) technique was used to explore the effect of β‐arrestins on the proliferation of HSCs and the activation of ERK1/2. Transfection of siRNA targeting β‐arrestin2 mRNA (siβ‐arrestin2) into HSCs led to a 68% and 70% reduction of β‐arrestin2 mRNA and protein expression, respectively. siβ‐arrestin2 abolished the effect of PDGF‐BB on the proliferation of HSCs. In addition, siβ‐arrestin2 exerted the inhibition of the activation of ERK1/2 in HSCs. The present study provided strong evidence for the participation of the β‐arrestin2 in the pathogenesis of hepatic fibrosis. The β‐arrestin2 depletion diminishes HSCs ERK1/2 signaling and proliferation stimulated by PDGF‐BB. Selective targeting of β‐arrestin2 inhibitors to HSCs might present as a novel strategy for the treatment of hepatic fibrosis. J. Cell. Biochem. 114: 1153–1162, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

5.
Although many previous reports have examined the function of prostaglandin E2 (PGE2) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin‐1 (Pfn‐1) and filamentous‐actin (F‐actin) in PGE2‐induced hMSC migration and proliferation and its related signal pathways. PGE2 (10?6 M) increased both cell migration and proliferation, and also increased E‐type prostaglandin receptor 2 (EP2) mRNA expression, β‐arrestin‐1 phosphorylation, and c‐Jun N‐terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)‐mediated knockdown of β‐arrestin‐1 and JNK (‐1, ‐2, ‐3) inhibited PGE2‐induced growth of hMSCs. PGE2 also activated Pfn‐1, which was blocked by JNK siRNA, and induced F‐actin level and organization. Downregulation of Pfn‐1 by siRNA decreased the level and organization of F‐actin. In addition, specific siRNA for TRIO and F‐actin‐binding protein (TRIOBP) reduced the PGE2‐induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE2 partially stimulates hMSCs migration and proliferation by interaction of Pfn‐1 and F‐actin via EP2 receptor‐dependent β‐arrestin‐1/JNK signaling pathways. J. Cell. Physiol. 226: 559–571, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
β‐Arrestins are scaffolding proteins implicated as negative regulators of TLR4 signaling in macrophages and fibroblasts. Unexpectedly, we found that β‐arrestin‐1 (β‐arr‐1) and ‐2 knockout (KO) mice are protected from TLR4‐mediated endotoxic shock and lethality. To identify the potential mechanisms involved, we examined the plasma levels of inflammatory cytokines/chemokines in the wild‐type (WT) and β‐arr‐1 and ‐2 KO mice after lipopolysaccharide (LPS, a TLR4 ligand) injection. Consistent with lethality, LPS‐induced inflammatory cytokine levels in the plasma were markedly decreased in both β‐arr‐1 and ‐2 KO, compared to WT mice. To further explore the cellular mechanisms, we obtained splenocytes (separated into CD11b+ and CD11b? populations) from WT, β‐arr‐1, and ‐2 KO mice and examined the effect of LPS on cytokine production. Similar to the in vivo observations, LPS‐induced inflammatory cytokines were significantly blocked in both splenocyte populations from the β‐arr‐2 KO compared to the WT mice. This effect in the β‐arr‐1 KO mice, however, was restricted to the CD11b? splenocytes. Our studies further indicate that regulation of cytokine production by β‐arrestins is likely independent of MAPK and IκBα‐NFκB pathways. Our results, however, suggest that LPS‐induced chromatin modification is dependent on β‐arrestin levels and may be the underlying mechanistic basis for regulation of cytokine levels by β‐arrestins in vivo. Taken together, these results indicate that β‐arr‐1 and ‐2 mediate LPS‐induced cytokine secretion in a cell‐type specific manner and that both β‐arrestins have overlapping but non‐redundant roles in regulating inflammatory cytokine production and endotoxic shock in mice. J. Cell. Physiol. 225: 406–416, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   

8.
β‐arrestin 1 and 2 (also known as arrestin 2 and 3) are homologous adaptor proteins that regulate seven‐transmembrane receptor trafficking and signalling. Other proteins with predicted ‘arrestin‐like’ structural domains but lacking sequence homology have been indicated to function like β‐arrestin in receptor regulation. We demonstrate that β‐arrestin2 is the primary adaptor that rapidly binds agonist‐activated β2 adrenergic receptors (β2ARs) and promotes clathrin‐dependent internalization, E3 ligase Nedd4 recruitment and ubiquitin‐dependent lysosomal degradation of the receptor. The arrestin‐domain‐containing (ARRDC) proteins 2, 3 and 4 are secondary adaptors recruited to internalized β2AR–Nedd4 complexes on endosomes and do not affect the adaptor roles of β‐arrestin2. Rather, the role of ARRDC proteins is to traffic Nedd4–β2AR complexes to a subpopulation of early endosomes.  相似文献   

9.
Biochemical studies suggest that G‐protein‐coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre‐assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub‐picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormone with therapeutic potential in cancer metastasis and heart failure, are generally attributed to local production of the peptide, that occur in response to sub‐micromolar concentrations. The highly sensitive signalosome identified here provides a regulatory mechanism for the extremely low levels of relaxin that circulate. The signalosome includes requisite Gαs, Gβγ and adenylyl cyclase 2 (AC2); AC2 is functionally coupled to RXFP1 through AKAP79 binding to helix 8 of the receptor; activation of AC2 is tonically opposed by protein kinase A (PKA)‐activated PDE4D3, scaffolded through a β‐arrestin 2 interaction with Ser704 of the receptor C‐terminus. This elaborate, pre‐assembled, ligand‐independent GPCR signalosome represents a new paradigm in GPCR signalling and provides a mechanism for the distal actions of low circulating levels of relaxin.  相似文献   

10.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
Detection of protein–protein interactions involved in signal transduction in live cells and organisms has a variety of important applications. We report a fluorogenic assay for G protein‐coupled receptor (GPCR)–β‐arrestin interaction that is genetically encoded, generalizes to multiple GPCRs, and features high signal‐to‐noise because fluorescence is absent until its components interact upon GPCR activation. Fluorescence after protease‐activated receptor‐1 activation developed in minutes and required specific serine–threonine residues in the receptor carboxyl tail, consistent with a classical G protein‐coupled receptor kinase dependent β‐arrestin recruitment mechanism. This assay provides a useful complement to other in vivo assays of GPCR activation.  相似文献   

13.
Glycosylation is one of the most important post‐translational modifications. It is clear that the single step of β‐1,4‐galactosylation is performed by a family of β‐1,4‐galactosyltransferases (β‐1,4‐GalTs), and that each member of this family may play a distinct role in different tissues and cells. In the present study, real‐time PCR revealed that the β‐1,4‐GalT I mRNA reached peaks at 2 weeks after sciatic nerve crush and 3 days after sciatic nerve transection. Combined in situ hybridization for β‐1,4‐GalT I mRNA and immunohistochemistry for S100 showed that β‐1,4‐GalT I mRNAs were mainly located in Schwann cells after sciatic nerve injury. In conclusion, β‐1,4‐GalT I might play important roles in Schwann cells during the regeneration and degeneration of the injured sciatic nerve. In other pathology, such as inflammation, we found that LPS administration affected β‐1,4‐GalT I mRNA expression in sciatic nerve in a time‐ and dose‐dependent manner, and β‐1,4‐GalT I mRNA is expressed mainly in Schwann cells. These results indicated that β‐1,4‐GalT I plays an important role in the inflammation reaction induced by intraperitoneal injection of LPS. Similarly, we found that β‐1,4‐GalT I in Schwann cells in vitro was affected in a time‐ and concentration‐dependent manner in response to LPS stimulation. All these results suggest that β‐1,4‐GalT I play an important role in Schwann cells in vivo and vitro during pathology. In addition, β‐1,4‐GalT I production was drastically suppressed by U0126 (ERK inhibitor), SB203580 (p38 inhibitor), or SP600125 (SAPK/JNK inhibitor), which indicated that Schwann cells which regulated β‐1,4‐GalT I expression after LPS stimulation were via ERK, SAPK/JNK, and P38 MAP kinase signal pathways. J. Cell. Biochem. 108: 75–86, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
T‐cell receptors (TCR) recognize their antigen ligand at the interface between T cells and antigen‐presenting cells, known as the immunological synapse (IS). The IS provides a means of sustaining the TCR signal which requires the continual supply of new TCRs. These are endocytosed and redirected from distal membrane locations to the IS. In our search for novel cytoplasmic effectors, we have identified β‐arrestin‐1 as a ligand of non‐phosphorylated resting TCRs. Using dominant‐negative and knockdown approaches we demonstrate that β‐arrestin‐1 is required for the internalization and downregulation of non‐engaged bystander TCRs. Furthermore, TCR triggering provokes the β‐arrestin‐1‐mediated downregulation of the G‐protein coupled chemokine receptor CXCR4, but not of other control receptors. We demonstrate that β‐arrestin‐1 recruitment to the TCR, and bystander TCR and CXCR4 downregulation, are mechanistically mediated by the TCR‐triggered PKC‐mediated phosphorylation of β‐arrestin‐1 at Ser163. This mechanism allows the first triggered TCRs to deliver a stop migration signal, and to promote the internalization of distal TCRs and CXCR4 and their translocation to the IS. This receptor crosstalk mechanism is critical to sustain the TCR signal.  相似文献   

16.
17.
β‐carotene, a type of terpenoid, has many metabolic and physiological functions. In particular, β‐carotene has an antitumor effect. However, the efficacy of β‐carotene against esophageal squamous cell carcinoma (ESCC) remains unclear. In our study, β‐carotene inhibited the growth of ESCC cells and downregulated expression of the Caveolin‐1 (Cav‐1) protein. Cav‐1 protein was expressed only in ESCC cells, not in Het‐1A cells. Moreover, β‐carotene triggered apoptosis, induced cell cycle G0?G1 phase arrest, and inhibited cell migration. To explore the mechanism involved in these processes, we further examined the effect of β‐carotene on the Cav‐1‐mediated AKT/NF‐κB pathway. The results showed that the level of AKT and NF‐κB phosphorylation was dramatically inhibited, which led to an increase in the Bax/Bcl‐2 ratio. Correspondingly, the activity of Caspase‐3 was also enhanced. These data suggest that β‐carotene has an antiproliferative role in ESCC cells and may be a promising chemotherapeutic agent for use against ESCC cells.  相似文献   

18.
TGF‐β1 (transforming growth factor‐β1) plays a central role in regulating proliferation, migration and differentiation of dental pulp cells during the repair process after tooth injury. Our previous study showed that p38 mitogen‐activated protein kinase may act downstream of TGF‐β1 signalling to effect the differentiation of dental pulp cells. However, the molecular mechanisms that trigger and regulate the process remain to be elucidated. TGF‐β1 interacts with signalling pathways such as Wnt/β‐catenin and Rho to induce diverse biological effects. TGF‐β1 activates β‐catenin signalling, increases β‐catenin nuclear translocation and interacts with LEF/TCF to regulate gene expression. Morphologic changes in response to TGF‐β1 are associated with activation of Rho GTPases, but are abrogated by inhibitors of Rho‐associated kinase, a major downstream target of Rho. These results suggest that the Wnt/β‐catenin and Rho pathways may mediate the downstream events of TGF‐β1 signalling.  相似文献   

19.
β‐d ‐glucans from mushroom strains play a major role as biological response modifiers in several clinical disorders. Therefore, a specific assay method is of critical importance to find useful and novel sources of β‐d ‐glucans with anti‐tumor activity. Hybridoma technology was used to raise monoclonal antibodies (Mabs) against extracellular β‐d ‐glucans (EBG) from Pleurotus ostreatus. Two of these hybridoma clones (3F8_3H7 and 1E6_1E8_B3) secreting Mabs against EBG from P. ostreatus were selected and 3F8_3H7 was used to investigate if they are polyol‐responsive Mabs (PR‐Mabs) by using ELlSA‐elution assay. This hybridoma cell line secreted Mab of IgM class, which was purified in a single step by gel filtration chromatography on Sephacryl S‐300HR, which revealed a protein band on native PAGE with Mr of 917 kDa. Specificity studies of Mab 3F8_3H7 revealed that it recognized a common epitope on several β‐d ‐glucans from different basidiomycete strains as determined by indirect ELlSA and Western blotting under native conditions. This Mab exhibited high apparent affinity constant (KApp) for β‐d ‐glucans from several mushroom strains. However, it revealed differential reactivity to some heat‐treated β‐d ‐glucans compared with the native forms suggesting that it binds to a conformation‐sensitive epitope on β‐d ‐glucan molecule. Epitope analysis of Mab 3F8_3H7 and 1E6_1E8_B3 was investigated by additivity index parameter, which revealed that they bound to the same epitope on some β‐d ‐glucans and to different epitopes in other antigens. Therefore, these Mab can be used to assay for β‐d ‐glucans as well as to act as powerful probes to detect conformational changes in these biopolymers. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:116–125, 2016  相似文献   

20.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号