首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The sauropod dinosaur ‘Bothriospondylus’, originally named on the basis of Late Jurassic remains from England, is demonstrated to be invalid, and the characters used to diagnose it are shown to be obsolescent features which are widespread throughout Sauropoda. Material referred to this genus spans a temporal range from the Middle Jurassic until the early Late Cretaceous and has been described from five different countries, across three continents. These remains represent a wide array of sauropod groups, comprising non‐neosauropod eusauropods, a macronarian, titanosauriforms (including at least one definite brachiosaurid) and a rebbachisaurid. The type material of the Middle Jurassic ‘B. madagascariensis’ represents a derived non‐neosauropod eusauropod and possesses two potential autapomorphies. However, as a result of the fragmentary nature of the material and the uncertainty surrounding its association, a new taxon is not erected. Of the numerous specimens referred to ‘Bothriospondylus’, however, several remains are considered diagnostic: Ornithopsis hulkei (Early Cretaceous, UK), Lapparentosaurus madagascariensis (Middle Jurassic, Madagascar) and Nopcsaspondylus alarconensis (early Late Cretaceous, Argentina). At least three types of sauropod were present in the Bathonian (Middle Jurassic) of north‐west Madagascar, with a basal eusauropod (Archaeodontosaurus), a more derived eusauropod (‘B. madagascariensis’) and a titanosauriform (Lapparentosaurus) all approximately contemporaneous. Palaeocontinental reconstructions suggest that Middle Jurassic Madagascan sauropods would still have been capable of global biotic interchange, and this is perhaps reflected in their diverse assemblage. Re‐evaluation of these Malagasy forms has shed new light on this important time period in sauropod evolution.  相似文献   

2.
Walter Etter 《Palaeontology》2014,57(5):931-949
A new isopod species, Eonatatolana geisingensis gen. et sp. nov., is described from Middle Jurassic shallow‐water sediments of southern Germany. It shows not only the almost completely preserved dorsal morphology but, in addition, details of the cephalic appendages, the pereiopods, pleopods and uropods. The presence of ambulatory pereiopods I–VII of a wide tridentate mandibular incisor with prominently developed posteriormost tooth and a narrow frontal lamina indicates that the new species belongs to the subfamily Conilerinae of family Cirolanidae within the suborder Cymothoida. It is closer to the species of the modern genus NatatolanaBruce than to any fossil isopod hitherto described. The isopod fossil record as well as current practices of isopod taxonomy in palaeontology are discussed, and the facies distribution and fossilization of isopods is reviewed with examples from the Jurassic.  相似文献   

3.
Continental strata of Early and Middle Jurassic age are seldom-exposed, and little is known of the history of sauropod dinosaurs prior to the neosauropod radiation of the end of the Middle Jurassic. Here, we report, in the Middle Jurassic of the Occidental Saharan Atlas (Algerian High Atlas), the discovery of a skeleton, including cranial material, of a new cetiosaurid sauropod. Chebsaurus algeriensis n. g., n. sp. represents the most complete Algerian sauropod available to date, only few remains were found before. To cite this article: F. Mahammed et al., C. R. Palevol 4 (2005).  相似文献   

4.
A 19 m thick package of well-sorted lowermost Jurassic (Hettangian-Lower Sinemurian?) sandstones within the Shemshak Formation of the southeastern Alborz Mountains displays features characteristic of foreshore to upper shoreface environments such as tabular bedding, low-angle lamination, trough cross-stratification, parting lineation, and oscillation ripples. In contrast to most other beach successions recorded in the literature the sandstones contain a trace fossil assemblage characterised by low abundance but comparatively high diversity. The assemblage, comprising 14 ichnotaxa, is dominated by Palaeophycus heberti, Rhizocorallium irregulare, Gyrochorte comosa, and Parahaentzschelinia surlyki. Contrary to predictions, which assume a dominance of suspension-feeders in such high-energy environments, the trace fossil assemblage represents a variety of ethological groups ranging from suspension-feeders to deposit-feeders, detritus-feeders, scavengers, and a possible trap constructor (Ctenopholeus), whereby deposit-feeders predominate. This anomaly is explained by a high amount of organic detritus in the sediment, indicated by abundant plant material, and a position of the beach in the vicinity of a river mouth.  相似文献   

5.
James M. Clark  Xing Xu 《Evolution》2009,2(2):236-247
Dinosaurs have captured the popular imagination more than any other extinct group of organisms and are therefore a powerful tool in teaching evolutionary biology. Most students are familiar with a wide variety of dinosaurs and the relative suddenness of their extinction, but few are aware of the tremendous longevity of their time on Earth and the richness of their fossil record. We first review some of the best-known groups of dinosaurs and discuss how their less-specialized relatives elucidate the path through which each evolved. We then discuss our recent discovery of Yinlong downsi, a distant relative of Triceratops, and other fossils from Jurassic deposits in China to exemplify how the continuing discovery of fossils is filling out the dinosaur family tree.  相似文献   

6.
Exceptionally preserved carbonate- and shale-hosted Mickwitzia muralensis from the Lower Cambrian Mural Formation, southern Canadian Rocky Mountains, complement one another to yield an unusually complete account of its ontogeny, ecology and phylogenetic relationships. The shell of M. muralensis is composed of dense phosphatic layers interspersed with porous organic-rich layers. At the insertion of shell-penetrating tubes, shell layers deflect inwards to produce inwardly pointing cones. The tubes are interpreted as having hosted setae that were secreted by outer-epithelial follicles. Follicular setae also occurred at the mantle margin, where they were oriented within the plane of the shell as in modern brachiopods. During ontogeny, the initial setae oriented in the plane of the shell occurred before the first shell-penetrative setae. In the juvenile and early-mature stages of shell secretion, a posterior opening was present between both valves and was used for the protrusion of an attachment structure. In the late-mature shell, this opening became fixed in the ventral valve. Based on the posterior margin and the shell microstructure, a close relationship between Mickwitzia and the paterinids is proposed with differences interpreted as heterochronic. The shell-penetrative setal apparatus of M. muralensis is distinct from that previously described of Micrina, though both types are conceivably homologous to adult and juvenile setae of modern brachiopods.  相似文献   

7.
Abstract: Eyes other than those of trilobites are rarely preserved in the fossil record. We describe here a set of six tiny, isolated, three‐dimensionally preserved compound eyes. These secondarily phosphatized eyes were etched from ‘Orsten’ limestone nodules dated to the Agnostus pisiformis Biozone from the Cambrian Alum Shale Formation of Sweden. The ovoid eyes arise from an elongated stalk, their surface being covered by a mosaic of regular and hexagonal‐shaped facets representing the surface of ommatidia. Facet size and pattern change within the same specimen from the posterior to the anterior end. With regard to some morphological criteria, we grouped the material in two different morphotypes, type A and B, the first being represented by specimens of two different developmental stages. From stage to stage, mostly growth in overall size and addition of new ommatidia was noticed. Among the meiobenthic ‘Orsten’ arthropods, only the crustacean Henningsmoenicaris scutula has been described as possessing stalked eyes, but the eyes of the largest specimen with preserved eyes of this species are much smaller than the new eyes and do not display any kind of ommatidia on their visual surface. However, fragments of larger specimens of H. scutula and the co‐occurrence of this species with the new isolated eyes in the sieving residues make it likely that the latter belong to this species but belong to more advanced stages than those described previously of H. scutula. Ontogenetically, the eye stalks of this fossil crustacean elongate progressively, while the regular hexagonal facets, lacking in early stages, appear later on.  相似文献   

8.
《Palaeoworld》2016,25(1):67-75
Angiosperms and gymnosperms are two well-separated groups in seed plants according to the current understanding. The huge gap between these two groups constitutes a serious threat against the Darwinism, which expects a continuous transitional series between them. The Lower Cretaceous Yixian Formation of Liaoning, China is famous for its megafossil angiosperms, including some early angiosperms and putative gnetalean plants. Here we document another Ephedra-like fossil plant, Pseudoephedra n. gen. n. sp., from the Yixian Formation on the basis of light microscopic (LM) and scanning electron microscopic (SEM) observations. Although its general morphology demonstrates a great resemblance to Ephedra, the expected micropylar tube characteristic of Ephedra is missing in Pseudoephedra. Instead a solid projection is seen on the top of the female parts. Such a puzzling character combination makes Pseudoephedra perplexing in seed plant phylogeny. If put in Ephedraceae (Gnetales), Pseudoephedra would destroy the only synapomorphy (micropylar tube) of the BEG clade. If put in angiosperms, Pseudoephedra would bridge the formerly huge gap between gymnosperms and angiosperms. Apparently, further investigation is needed to clarify the uncertain position of Pseudoephedra.  相似文献   

9.
Parundichna schoelli igen. nov., isp. nov. from the Middle Triassic (Ladinian) Lower Keuper of Rot am See (Baden-Württemberg, Germany) consists of clusters of sigmoidal scratches symmetrically arranged in a plaited pattern. It is here interpreted as the swimming trace of a large coelacanth fish. In contrast to ichnospecies of Undichna there is no unpaired groove left by the tail fin. Instead, the sets of parallel scratches resulted from the pendulum motion of two pairs of appendages, the pectoral and pelvic fins, which acted in alternation, as in tetrapods. This strange mode of swimming is compared to films of modern Latimeria and to computer simulations; it probably corresponds to a particular foraging behaviour. The presence of fittingly-sized coelacanths is documented in coeval carbonates (Alberti-Bank) by disarticulated skeletal elements. Since the Lower Keuper represents a fluvial and estuarine facies of the receding Muschelkalk sea, we cannot be sure whether this trace was made in a marine or freshwater environment.  相似文献   

10.
11.
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so‐called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total‐group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat‐dominated substrates that the enigmatic Ediacaran taxa were associated with, the so‐called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara‐aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late‐Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara‐style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.  相似文献   

12.
Abstract: We describe a new, exceptionally well‐preserved fossil bird recovered from marine deposits of the Early Eocene Fur Formation of Denmark. Morsoravis sedilis gen. et sp. nov. is known by a single specimen that consists of a three‐dimensional skull, vertebral column, ribs, pelvis, and left hindlimb and associated parts of the right hindlimb. Comparisons based on overall morphology and particularly characters of the skull, vertebrae and pelvis indicate that the new specimen is morphologically similar to charadriiform birds (the shorebirds and relatives). This similarity is also expressed by a phylogenetic analysis of higher neornithine (modern birds) taxa, which supports a close relationship between the new fossil and modern charadriiforms. The morphology of the hindlimbs, in particular, shows that the new fossil corresponds to a new taxon that is distinguishable from modern charadriiform clades. One interesting aspect of its morphology is the presence of hindlimb specializations that are most commonly found among perching birds – these suggest that ecologically the new Danish fossil bird may have differed from the wading habits typical of most charadriiforms.  相似文献   

13.
Extant crocodylians have a limited taxonomic and ecological diversity but they belong to a lineage (Crocodylomorpha) that includes basal and rather generalized species and a highly diverse clade, Crocodyliformes. The latter was among the most successful groups of Mesozoic tetrapods, both in terms of taxonomic and ecological diversity. Crocodyliforms thrived in terrestrial, semiaquatic, and marine environments, and their fossil diversity includes carnivorous, piscivorous, insectivorous, and herbivorous species. This remarkable ecological and trophic diversity is thought only to occur in forms with a completely akinetic skull, characterized by a functionally integrated and tightly sutured braincase‐quadrate‐palate complex. However, the patterns of evolutionary change that led to the highly modified skull of crocodyliforms and that likely enabled their diversification remain poorly understood. Herein, a new basal crocodylomorph from the Late Jurassic of Patagonia is described, Almadasuchus figarii gen. et sp. nov. The new taxon is known from a well‐preserved posterior region of the skull as well as other craniomandibular and postcranial remains. Almadasuchus figarii differs from all other crocodylomorphs in the presence of six autapomorphic features, including the presence of a large lateral notch on the upper temporal bar, an otic shelf of the squamosal that is wider than long, a deep subtriangular concavity on the posterolateral surface of the squamosal, and an elongated pneumatopore on the ventral surface of the quadrate. Phylogenetic analysis focused on the origin of Crocodyliformes places Almadasuchus as the sister group of Crocodyliformes, supported by synapomorphic features of the skull (e.g. subtriangular basisphenoid, absence of basipterygoid process, absence of a sagittal ridge on the frontal, and a flat anterior skull roof with an ornamented dorsal surface). New braincase information provided by Almadasuchus and other crocodylomorphs indicates that most of the modifications on the posterior region of the skull of crocodyliforms, including the strongly sutured braincase, quadrate, and the extensive secondary palate appeared in a stepwise manner, and pre‐dated the evolutionary changes in the snout, jaws, and dentition. This indicates that the progressively increased rigidity of the skull provided the structural framework that allowed the great ecological diversification of crocodyliforms during the course of the Mesozoic. The phylogenetic pattern of character acquisition inferred for the strongly sutured (akinetic) skull and the appearance of more diverse feeding behaviours that create high mechanical loads on the skull provides another interesting parallel between the evolution of Mesozoic crocodyliforms and the evolutionary origins of mammals.  相似文献   

14.
GERALD MAYR  & CHARLES W. KNOPF 《Ibis》2007,149(4):774-782
A new species of the charadriiform taxon Turnipax Mayr, 2000 is described from the Lower Oligocene fossil site Frauenweiler in southern Germany. The postcranial skeleton assigned to Turnipax oechslerorum sp. nov. is very well preserved and allows the recognition of significant, previously unknown osteological details of Turnipax , especially concerning the wing and pectoral girdle bones. We provide evidence that Turnipax is a stem lineage representative of the Turnicidae (buttonquails) and synonymize Turnipacidae Mayr, 2000 with Turnicidae Gray, 1840. Turnipax is the earliest fossil representative of the Turnicidae, which otherwise have no Paleogene fossil record. Because recent molecular studies support a charadriiform origin of buttonquails, the mosaic distribution in the skeleton of Turnipax of derived features of the Turnicidae and non-turnicid charadriiform birds is of particular interest. Turnipax exhibits a more plesiomorphic morphology than extant Turnicidae, and we assume that its habitat and way of living differed from that of crown group Turnicidae, which may not have diversified before the spread of grasslands during the Oligocene and Miocene.  相似文献   

15.
The very conspicuous dazzle coloration invented for naval defence during World War I was used in pre‐radar days to mislead attackers of naval units about vessel size, type, speed, and direction. Among several potential types of defences, it is proposed that zebra‐like white leaf variegation may defend leaves and other plant organs from herbivory as a result of dazzle effects. Two different dazzle effects may be involved in defending plants from herbivory, making it hard for herbivores (1) to decide where, in a three‐dimensional space, to bite the leaves (large herbivores) and (2) to land on them (insects). In addition, the related types of leaf coloration described in the present study, comprising parallels of military defensive trickery naval painting, may also deceive herbivores about the actual shape, location, and identity of leaves. Some of these visual defences may operate at the same time as other visual defences, such as aposematism, or serve various physiological functions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 692–697.  相似文献   

16.
We report on and name two new taxa of basal crocodylomorph archosaurs from the Lower Jurassic, Litargosuchus leptorhynchus gen. et sp. nov. , from the upper Elliot Formation (Stormberg Group) of South Africa, and Kayentasuchus walkeri gen. et sp. nov. , from the Kayenta Formation (Glen Canyon Group) of Arizona, USA. Examination of this material led to a reconsideration of basal crocodylomorph interrelationships. A phylogenetic analysis found no support for the monophyly of Sphenosuchia.  © 2002 The Linnean Society of London. Zoological Journal of the Linnean Society , 2002, 136 , 77–95.  相似文献   

17.
Abstract: A dense assemblage of fossil isopod crustaceans (Brunnaega tomhurleyi Wilson, sp. nov.) from the Lower Cretaceous (Albian) Toolebuc Formation of Queensland, Australia, has been found within the carcass of a large actinopterygian fish, Pachyrhizodus marathonensis (Etheridge). Preservation of fine anatomical details supports referral to the genus Brunnaega Polz, which is herein reassigned to the family Cirolanidae. Furthermore, placement of this taxon within the cirolanid subfamily Conilerinae Kensley and Schotte is significant because the group includes modern species that are well known as voracious scavengers. This isopod–fish association represents the oldest unequivocal evidence of scavenging by Mesozoic cymothoidean isopods on a large vertebrate carcass.  相似文献   

18.
19.
Sebastian G. Dalman 《Ichnos》2015,22(3-4):177-182
Cheliceratichnus lockleyi ichnogen. nov. et ichnosp. nov. is a new ichnotaxon of arthropod resting trace (cubichnium) from the Lower Jurassic (Hettangian) East Berlin Formation in Holyoke, Massachusetts, USA. The trace fossil is preserved as showing many of the external anatomical features of the exoskeleton, which resemble those of some chelicerates, notably sun spiders (Solifugae). The resting trace is directly associated with a trackway of the ichnospecies Acanthichnus cursorius Hitchcock. This is the first described fossil resting trace of a solifugan-like arthropod, and the first direct evidence of a trackmaker of A. cursorius.  相似文献   

20.
A charcoalified fossil flower bud of a new genus and species (Teixeiria lusitanica) is described from the Early Cretaceous of Portugal. The flower is actinomorphic and unisexually male. At the base of the bud there are several bracts of different sizes, which are followed by sepal-like and petal-like tepals. Bracts and perianth organs seem to be arranged spirally and to exhibit transitions between different organ categories. The androecium has numerous stamens in two sizes, but with unclear arrangement. Pollen is small and tricolpate with a perforate tectum and a densely columellate infratectal layer. No carpels or remains of carpels could be observed on the floral axis. Teixeiria lusitanica shows most affinities to members of Ranunculales. There are also some similarities with Berberidopsis (Berberidopsidaceae, Berberidopsidales) and members of the Saxifragales (Hamamelidaceae and Daphniphyllaceae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号