首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L M Gracheva  V G Korolev 《Genetika》1989,25(8):1356-1363
The method of restriction analysis has been used to study the length of 10 deletion mutations in ADE2 locus of Saccharomyces cerevisiae. We showed that 7 deletions overlapped the whole transcribed region of the gene ADE2, while 3 deletions have one of the ends situated in this region. Four controlled sites were fixed on the genetic map of ADE2 locus, based on these results. Deletion mapping of great number of point mutations demonstrated non-random distribution of mutations of different types on the map of ADE2 locus.  相似文献   

2.
3.
The lethal and mutagenic effects and the nature of forward mutations in ADE2 gene induced by highly carcinogenic agent 4-nitroquinoline-N-oxide (4NQO) and its noncarcinogenic analogue 3-methyl-4-nitroquinoline-N-oxide (3M4NQO) have been examined in Saccharomyces cerevisiae. It is shown that 3M4NQO is more toxic than 4NQO. Both are very efficient mutagens: the mutagenic efficiency for ADE1 and ADE2 genes was 7.9 X 10(-5) for 4NQO and 10.5 X 10(-5) for 3M4NQO. The base pair substitutions are the main type of induced mutations in ADE2 gene (95 and 89% for 4NQO and 3M4NQO, respectively); among these 40% transversions for 4NQO and 63% for 3M4NQO, GC----AT transitions-32 and 31% for 4NQO and 3M4NQO, respectively, AT----GC transitions-23 and 22% for 4NQO and 3M4NQO, respectively. The results obtained indicate that 4NQO and 3M4NQO induce the same spectrum of mutations in ADE2 gene and that both mutagens are nonspecific in yeast cells.  相似文献   

4.
We have studied the molecular nature of ade2 mutations induced by UV light and bifunctional acridine-mustard (BAM) in wild-type (RAD) and in excision-deficient (rad2) strains of the yeast, Saccharomyces cerevisiae. In the RAD strain, UV causes 45% GC → AT transitions among all mutations; in the rad2 strain this value is 77%. BAM was shown to be highly specific for frameshift mutagenesis: 60% frameshifts in the RAD strain, and as many as 84% frameshifts in the rad2 strain were induced. Therefore, the rad2 mutation affects the specificity of UV- and BAM-induced mutagenesis in yeast. Experimental data agree with the view that the majority of mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the rad2 strain are predominantly postreplicative events. Our results also suggest that: (1) cytosine-containing photoproducts are the substances responsible for major premutational damage to DNA; (2) a fraction of the mutations may arise in the course of excision repair of UV photoproducts.  相似文献   

5.
Plasmid YEp(ADE1)1a, containing a 2.7-kb Sau3A fragment of Saccharomyces cerevisiae DNA inserted at the BamHI site of the yeast shuttle vector pBTI-1 (Morris et al., 1981), results in high frequency, unstable transformation of ade1 yeast strains. A second plasmid, YRp(ADE1)2, containing adjacent 0.5-kb and 3.0-kb BamHI fragments in pBR322 gave three types of yeast transformants: (1) transformants carrying extrachromosomal copies of the plasmid which indicate the presence of a functional ars sequence, (2) transformants indistinguishable from ade1 strains by hybridization analyis, and (3) a transformant carrying a multimeric form of YRp(ADE1)2. Cells transformed with either of the plasmids are free of the red pigment characteristic of ade1 mutants and indicate potential for direct colour-based selection of yeast transformants using ADE1 plasmids.  相似文献   

6.
7.
The ADE1 gene of Saccharomyces cerevisiae was isolated by complementation in S. cerevisiae from a yeast genomic DNA library carried on plasmid YEp13. Electron microscopy of R-loop-containing DNA indicated the location of the ADE1 gene on the plasmid insert. Gene disruption and gene replacement were used to demonstrate that the ade1-complementing sequence was the actual ADE1 gene that maps on chromosome I. ade1 strains which normally form red colonies form white ones when transformed with the cloned ADE1 gene. This property should be very useful, since it enables detection of plasmids carrying this gene under nonselective conditions.  相似文献   

8.
The yeast ADE 1 gene has been cloned and sequenced. The primary structure deduced from the nucleotide sequence demonstrated that phosphoribosylaminoimidazole-succinocarboxamide synthetase is a protein with molecular weight of 34 500 D.  相似文献   

9.
ADE1 gene of Saccharomyces cerevisiae codes for the primary structure of SAICAR-synthetase. Mutational changes of ADE1 gene result in the accumulation of red pigment in cells. Colour differences, thus, serve as a basis for the selection of mutants or transformants. ADE1 gene was cloned as a 4.0 kb HindIII fragment of yeast DNA in a shuttle vector by complementing the ade1 mutation in yeast. The study of ADE1 gene expression in Escherichia coli showed that the 4.0 kb fragment containing the ADE1 gene does not complement purC mutations in E. coli. However, prototrophic colonies appeared at a frequency of 10(-7)-10(-8) after incubating clones bearing the recombinant plasmid with ADE1 gene on selective media. The plasmid DNA isolated from such clones complements the purC mutation in E. coli and the ade1 mutation in S. cerevisiae. Structural analysis of the plasmid demonstrated that the cloned DNA fragment contained an additional insertion of the bacterial origin. Further restriction enzyme analysis proved the insertion to be the bacterial element IS1. Expression of the cloned ADE1 gene in S. cerevisiae is controlled by its own promoter, whereas in E. coli it is controlled by the IS1 bacterial element.  相似文献   

10.
Mutational changes in ADE2 result in the accumulation of red pigment in cells, which serves as an indicator for the selection of mutants. This easily detectable phenotype of red-coloured colonies can account for the wide use of ade2 mutants in yeast genetics. ADE2 gene was cloned in a shuttle vector by complementing the ade2 mutation in the yeast. It was shown that the 2.2 kbp HindIII fragment of yeast DNA contains structural sequences of the ADE2 gene as well as the ARS sequence. Deletion analysis of the 5' end of the ADE2 gene showed the ARS sequence to be situated at the distal end of the 1 kbp HindIII fragment. Removal of the ARS sequence does not influence ADE2 gene complementation ability. Transformants containing the ADE2 gene comprised in their plasmids form white colonies. Loss of the plasmids results in colour change of colonies.  相似文献   

11.
12.
The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors   总被引:41,自引:0,他引:41  
A Stotz  P Linder 《Gene》1990,95(1):91-98
We have determined the sequence of a DNA fragment encoding the ADE2 gene from Saccharomyces cerevisiae. A DNA fragment of 2241 bp capable of complementing ade2 mutations was modified so it is available as a single BglII fragment for use in yeast vectors or for gene disruptions. The minimal fragment codes for a putative protein which is highly similar to the protein encoded by the ADE6 gene from Schizosaccharomyces pombe and to the proteins encoded by the purEK operon of Escherichia coli.  相似文献   

13.
E L Bandas 《Genetika》1983,19(8):1384-1386
A diploid strain of Saccharomyces cerevisiae, T6 is described which monitors both mitotic crossing over and induction of aneuploidy. The chromosome III carries recessive markers: rgh12 of "rough colony" phenotype closely linked to centromere, the left arm is marked with his4, the right arm is marked both with thr4 and the locus of mating type alpha. Expression of all the markers on chromosome III leads to formation of colonies which are rough, require histidine and threonine, and are of alpha mating type. These colonies arise as a result of the loss of a chromosome during mitosis, which makes the strain allow detection of monosomic cells formation. Chromosome XV carries two phenotypically distinguishable and recessive alleles of the gene ade2: ade2-192 (causes red coloration of colonies) and ade2-G45 (causes pink coloration of colonies). Mitotic crossing over generates two reciprocal products which can be revealed together in colonies as pink and red sectors in double-spotted colonies. Both double-spotted and monosomic colonies have been obtained after treatment with gamma-rays. The frequency of mitotic crossing over after irradiation by 1000-3000 Gray increased up to 2-3.2% (the spontaneous level was 0.006%), the frequency of aneuploidy was 0.12 to 0.57% at plating immediately after irradiation (the spontaneous monosomics were not observed among 1.5 X 10(5) cells scored). Induction of mitotic crossing over and aneuploidy by benomyl was rather slight (up to 0.05 and 0.006%, respectively).  相似文献   

14.
15.
Red adenine-dependent mutants of Hansenula polymorpha, Pichia guilliermondii, Williopsis saturnus yeasts have been transformed by the plasmid pYE (ADE2) 2 DNA containing ADE2 gene from Saccharomyces cerevisiae. The analysis of two P. guilliermondii Ade+-transformants has revealed the integration of pYE (ADE2)2 sequence into the recipient strain genome and partial restoration of the deficient function.  相似文献   

16.
Several hundred new mutations in the gene (HXK2) encoding hexokinase II of Saccharomyces cerevisiae were isolated, and a subset of them was mapped, resulting in a fine-structure genetic map. Among the mutations that were sequenced, 35 were independent missense mutations. The mutations were obtained by mutagenesis of cloned HXK2 DNA carried on a low-copy-number plasmid vector and screened for a number of different phenotypes in yeast strains bearing chromosomal hxk1 and hxk2 null mutations. Some of these mutants were characterized both in vivo and in vitro; they displayed a wide spectrum of residual hexokinase activities, as indicated by three assays: in vitro enzyme activity, ability to grow on glucose and fructose, and ability to repress invertase production when growing on glucose. Of those that failed to support growth on fructose, only a small minority made normal-size, stable, and inactive protein. Analysis of the amino acid changes in these mutants in light of the crystallographically determined three-dimensional structure of hexokinase II suggests important roles in structure or catalysis for six amino acid residues, only two of which are near the active site.  相似文献   

17.
18.
The comparative analysis of sterol content in the yeast Saccharomyces cerevisiae strains singly or doubly defective in nystatin resistance genes was carried out. The strains with two mutations in NYS genes were shown to accumulate the sterol mixture, similar to that of the parental singly defective mutant. This type of gene interaction allows to define the main biochemical order of reaction in ergosterol synthesis: methylation in C24 (NYS1), delta 8----delta 7 isomerization (NYS2), C5 (6) and C22 (23) desaturation (NYS3 and NYSX).  相似文献   

19.
S V Koval'tsova  V G Korolev 《Genetika》1989,25(12):2111-2120
We have studied the influence of him1, him2, him3 and himX mutations on the frequency of spontaneous mitotic gene conversion in the yeast Saccharomyces cerevisiae using the set of heteroallelic combinations in the ADE2 gene. Data obtained on the HIM/HIM, him/him homozygotes and HIM/him heterozygotes indicate that the him1 mutation is recessive with respect to conversion, whereas the him2, him3 and himX mutations are semidominant. Gene conversion was increased in the majority of heteroalleles of mutant diploids him1/him1. On the contrary, the him2, him3 and himX mutants have hypo-rec phenotypes on mitotic conversion. The him mutations do not affect some heteroalleles, moreover, for some heteroalleles, the effects of the him mutations was opposite. On the basis of the sum of genetical data and, particularly, of conversion event pattern in the him mutants, we suggest that him mutations analysed affect the repair pathway for mismatch correction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号