首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song P  Wei J  Wang HC 《FEBS letters》2005,579(1):90-94
Ectopic expression of oncogenic H-Ras in cells results in increases of cell susceptibility to the anticancer agent FR901228. Investigating the roles of Ras-induced pathways in FR901228-induced apoptosis, we have found that the phosphatidylinositol 3-kinase pathway plays an anti-apoptotic role, whereas the stress-activated protein kinase p38 pathway plays a pro-apoptotic role in FR901228-induced apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) pathway plays an anti-apoptotic role in non-transformed cells; however, it plays a pro-apoptotic role in Ras-transformed cells in response to FR901228 treatment. An essential role of the ERK pathway in regulating caspase-3 contents may contribute to its pro-apoptotic role in Ras-transformed cells.  相似文献   

2.
Inhibition of histone deacetylase (HDAC) activity induces growth arrest, differentiation, and, in certain cell types, apoptosis. FR901228, FK228, or depsipeptide, is an HDAC inhibitor effective in T-cell lymphomas. Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1) and remains incurable. We examined whether FR901228 is effective for treatment of ATL by assessing its ability to induce apoptosis of HTLV-1-infected T-cell lines and primary leukemic cells from ATL patients. FR901228 induced apoptosis of Tax-expressing and -unexpressing HTLV-1-infected T-cell lines and selective apoptosis of primary ATL cells, especially those of patients with acute ATL. FR901228 also efficiently reduced the DNA binding of NF-kappaB and AP-1 in HTLV-1-infected T-cell lines and primary ATL cells and down-regulated the expression of Bcl-x(L) and cyclin D2, regulated by NF-kappaB. Although the viral protein Tax is an activator of NF-kappaB and AP-1, FR901228-induced apoptosis was not associated with reduced expression of Tax. In vivo use of FR901228 partly inhibited the growth of tumors of HTLV-1-infected T cells transplanted subcutaneously in SCID mice. Our results indicated that FR901228 could induce apoptosis of these cells and suppress the expression of NF-kappaB and AP-1 and suggest that FR901228 could be therapeutically effective in ATL.  相似文献   

3.
4.
ERK信号通道调控大鼠气道平滑肌细胞的增殖与凋亡   总被引:9,自引:0,他引:9  
 为了了解ERK信号通道对正常大鼠气道平滑肌细胞(airway smooth muscle cells, ASMCs)增殖与凋亡的调控. 通过对正常大鼠ASMCs原代培养,4~7代用于实验,以ERK激动剂表皮生长因子(EGF)和抑制剂PD98059干预ASMCs生长,采用RT-PCR和免疫荧光染色观察ASMCs上ERK mRNA和蛋白的表达,MTT法、H-TdR掺入法检测ASMC增殖,Hoechst染色和Annexin-Ⅴ FITC PI双染色法检测细胞凋亡,Western免疫印迹检测ERK1/2、磷酸化ERK1/2和procaspase-3蛋白的表达.结果发现ASMCs上存在ERK mRNA和蛋白的表达,与空白对照组比较,PD98059干预后ASMCs的A490值和细胞DNA合成量均减少(P<0.05),细胞凋亡指数、早期凋亡细胞百分率均增高(P<0.05),ERK1/2、磷酸化ERK1/2表达和ERK活化率均降低, procaspase-3蛋白的表达增高.EGF干预后ASMCs的A490值和细胞DNA合成量均增高(P<0.05),细胞凋亡指数、早期凋亡细胞百分率均下降(P<0.05),ERK1/2、磷酸化ERK1/2表达和ERK活化率均增高, procaspase-3蛋白的表达降低.P+E组无明显差异(P>0.05).ERK信号通道参与大鼠ASMCs增殖和凋亡的调控,ERK对大鼠ASMCs凋亡的调控与procaspase-3蛋白有关,这一发现将有助于对哮喘ASMCs异常增殖调控机制的深入研究.  相似文献   

5.
6.
目的:探讨血管平滑肌细胞(VSMC)中TGF-β/Smad与ERK信号转导通路是否存在相互调节关系。方法:原代培养的大鼠胸主动脉平滑肌细胞,分四组:①对照组,②TGF-β1组,③ERK阻断剂(PD98059)组和④TGF-β1+ERK阻断剂(PD98059)组。分别用Western blot法检测VSMC内Smad2/3、ERK1/2蛋白表达及磷酸化Smad2/3、磷酸化ERK1/2蛋白含量,RT-PCR方法测VSMC中Smad2、Smad3mRNA的表达。结果:①与对照组相比,TGF-β1组P-Smad2/3、P-ERK1/2蛋白含量增多(P0.05),ERK阻断剂组P-Smad2/3、P-ERK1/2蛋白含量减少(P0.05),TGF-β1+ERK阻断剂组P-Smad2/3、P-ERK1/2蛋白含量无差异;与TGF-β1组相比,TGF-β1+ERK阻断剂组P-Smad2/3、P-ERK1/2蛋白含量减少(P0.05)。各组间Smad2/3、ERK1/2蛋白表达无差异。②各组的Smad2、Smad3mRNA表达无差异。结论:TGF-β1诱导的Smad2/3蛋白磷酸化依赖ERK通路激活,但ERK通路对Smad2/3蛋白和mRNA表达水平无影响。  相似文献   

7.
Strong evidences support the inhibitory activity of cellular FLICE-inhibitory protein (FLIP) in the apoptotic signalling by death receptors in tumor cells. However, little is known about the role of FLIP in the regulation of apoptosis in non-transformed cells. In this report, we demonstrate that FLIP(L) plays an important role as a survival protein in non-transformed breast epithelial cells. Silencing of FLIP(L) by siRNA methodology enhances TRAIL-R2 expression and activates a caspase-dependent cell death process in breast epithelial cells. This cell death requires the expression of TRAIL, TRAIL-R2, FADD and procaspase-8 proteins. A mitochondria-operated apoptotic pathway is partially required for FLIP(L) siRNA-induced apoptosis. Interestingly, FLIP(L) silencing markedly abrogates formation of acinus-like structures in a three-dimensional basement membrane culture model (3D) of the human mammary MCF-10A cell line through a caspase-8 dependent process. Furthermore, over-expression of FLIP(L) in MCF-10A cells delayed lumen formation in 3D cultures. Our results highlight the central role of FLIP in maintaining breast epithelial cell viability and suggest that the mechanisms regulating FLIP levels should be finely controlled to prevent unwanted cell demise.  相似文献   

8.
Strong evidences support the inhibitory activity of cellular FLICE-inhibitory protein (FLIP) in the apoptotic signalling by death receptors in tumor cells. However, little is known about the role of FLIP in the regulation of apoptosis in non-transformed cells. In this report, we demonstrate that FLIPL plays an important role as a survival protein in non-transformed breast epithelial cells. Silencing of FLIPL by siRNA methodology enhances TRAIL-R2 expression and activates a caspase-dependent cell death process in breast epithelial cells. This cell death requires the expression of TRAIL, TRAIL-R2, FADD and procaspase-8 proteins. A mitochondria-operated apoptotic pathway is partially required for FLIPL siRNA-induced apoptosis. Interestingly, FLIPL silencing markedly abrogates formation of acinus-like structures in a three-dimensional basement membrane culture model (3D) of the human mammary MCF-10A cell line through a caspase-8 dependent process. Furthermore, over-expression of FLIPL in MCF-10A cells delayed lumen formation in 3D cultures. Our results highlight the central role of FLIP in maintaining breast epithelial cell viability and suggest that the mechanisms regulating FLIP levels should be finely controlled to prevent unwanted cell demise.  相似文献   

9.
Osteoclasts are bone-resorptive multinucleated cells that are differentiated from hemopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-kappaB ligand (RANKL) and M-CSF. Downstream signaling molecules of the receptor of RANKL, RANK, modulate the differentiation and the activation of osteoclasts. We recently found that histone deacetylase inhibitors (HDIs), known as anticancer agents, selectively suppressed osteoclastogenesis in vitro. However, the molecular mechanism underlying inhibitory action of HDIs in osteoclastogenesis and the effect of HDIs on pathological bone destruction are still not remained to be elucidated. In this study, we show that a depsipeptide, FR901228, inhibited osteoclast differentiation by not only suppressing RANKL-induced nuclear translocation of NFATc1 but also increasing the mRNA level of IFN-beta, an inhibitor of osteoclastogenesis. The inhibition of osteoclast formation by FR901228 was abrogated by the addition of IFN-beta-neutralizing Ab. In addition, treatment of adjuvant-induced arthritis in rats revealed that FR901228 inhibited not only disease development in a prophylactic model but also bone destruction in a therapeutic model. Furthermore, immunostaining of the joints of therapeutically treated rats revealed significant production of IFN-beta in synovial cells. Taken together, these data suggest that a HDI inhibits osteoclastogenesis and bone destruction by a novel action to induce the expression of osteoclast inhibitory protein, IFN-beta.  相似文献   

10.
Increased activation of the epidermal growth factor receptor (EGFR) is frequently observed in tumors, and inhibition of the signaling pathways originated in the EGFR normally renders tumor cells more sensitive to apoptotic stimuli. However, we show that inhibition of EGFR signaling in non-transformed breast epithelial cells by EGF deprivation or gefitinib, an inhibitor of EGFR tyrosine kinase, causes the upregulation of the long isoform of caspase-8 inhibitor FLICE-inhibitory protein (FLIPL) and makes these cells more resistant to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway plays a pivotal role in the regulation of FLIPL levels and sensitivity to TRAIL-induced apoptosis by EGF. Upregulation of FLIPL upon EGF deprivation correlates with a decrease in c-Myc levels and c-Myc knockdown by siRNA induces FLIPL expression. FLIPL upregulation and resistance to TRAIL in EGF-deprived cells are reversed following activation of an estrogen activatable form of c-Myc (c-Myc-ER). Finally, constitutive activation of the ERK1/2 pathway in HER2/ERBB2-transformed cells prevents EGF deprivation-induced FLIPL upregulation and TRAIL resistance. Collectively, our results suggest that a regulated ERK1/2 pathway is crucial to control FLIPL levels and sensitivity to TRAIL in non-transformed cells, and this mechanism may explain the increased sensitivity of tumor cells to TRAIL, in which the ERK1/2 pathway is frequently deregulated.  相似文献   

11.
旨在探究Ⅲ型纤连蛋白组件包含蛋白5(type Ⅲ domain-containing protein5,FNDC5)对C3H10T1/2细胞成脂分化的调控作用.利用qRT-PCR和Western印迹检测FNDC5在C3H10T1/2细胞成脂分化过程中的时序性表达规律;构建慢病毒包被的过表达/干扰FNDC5载体,转染C3...  相似文献   

12.
Although basic fibroblast growth factor (FGF-2) had been shown to inhibit type I collagen gene expression in osteoblast, its inhibitory mechanism is unknown. In the present study, we investigated the underlying mechanisms by which growth factors downregulate type I collagen gene expression. Treatment of mouse osteoblastic MC3T3-E1 cells with okadaic acid (40 ng/ml), an inhibitor of phosphoserine/threonine-specific protein phosphatase and activator of ERK1/2, for 24 h and 48 h completely inhibited steady-state mRNA levels of type I collagen. FGF-2 (30 ng/ml), platelet-derived growth factor-BB (PDGF-BB), 30 ng/ml, and serum, which activate ERK mitogen-activated protein kinase (MAPK) pathway also inhibited collagen type I gene expression, suggesting that the activation of ERK pathway mediates inhibition of type I collagen mRNA. This observation was further confirmed by experiments using inhibitors of the ERK pathway (i.e., PD and U0126), which increased type I collagen mRNA in MC3T3-E1 cells, indicating that the inhibition of ERK pathway upregulates type I collagen gene expression. Low serum (0.3%) markedly increased type I collagen mRNA. MEK inhibitor PD inhibited c-fos induction by FGF-2 and PDGF-BB, suggesting that c-fos is the downstream target of ERK pathway. Our data have clearly demonstrated for the first time that the ERK MAPK pathway play an important role in the regulation of type I collagen gene expression in osteoblastic cells. Results also showed that one of the mechanisms by which FGF-2 and PDGF-BB downregulate type I collagen gene expression in the osteoblast is through the activation of ERK signaling pathway.  相似文献   

13.
14.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

15.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. Gliomas express elevated levels of matrix metalloproteinases (MMPs), which have been implicated in the control of proliferation and invasion as well as neovascularization. Progressive loss of LGI1 expression has been associated with the development of high grade gliomas. We have shown previously that the forced re-expression of LGI1 in different glioma cells inhibits proliferation, invasiveness, and anchorage-independent growth in cells null for its expression. Here, using Affymetrix gene chip analysis, we show that reexpression of LGI1 in T98G cells results in the down-regulation of several MMP genes, in particular MMP1 and MMP3. LGI1 expression also results in the inhibition of ERK1/2 phosphorylation but not p38 phosphorylation. Inhibition of the MAPK pathway using the pharmacological inhibitors PD98059, U0126, and SB203580 in T98G LGI1-null cells inhibits MMP1 and MMP3 production in an ERK1/2-dependent manner. Treatment of LGI1-expressing cells with phorbol myristate acetate prevents the inhibition of MMP1/3 and restores invasiveness and ERK1/2 phosphorylation, suggesting that LGI1 acts through the ERK/MAPK pathway. Furthermore, LGI1 expression promotes phosphorylation of AKT, which leads to phosphorylation of Raf1(Ser-259), an event shown previously to negatively regulate ERK1/2 signaling. These data suggest that LGI1 plays a major role in suppressing the production of MMP1/3 through the phosphatidylinositol 3-kinase/ERK pathway. Loss of LGI1 expression, therefore, may be an important event in the progression of gliomas that leads to a more invasive phenotype in these cells.  相似文献   

16.
To investigate the contribution that ERK/mitogen-activated protein kinase signalling makes to cell cycle progression and gene expression, we have constructed cell lines to express an inducible version of activated MEK1. Using these cells, we show that activation of MEK leads to the expression of Fra-1 and Fra-2 but not c-Fos. Treatment of Ras-transformed cells with the MEK inhibitor PD098059 blocks expression of Fra-1 and Fra-2, showing that in Ras transformation ERK signalling is responsible for Fra-1 and Fra-2 expression. Activation of MEK1 in growth-arrested cells leads to DNA synthesis; however, ERK activation alone is insufficient because the induction of DNA synthesis is blocked by inhibition of phosphatidylinositol 3-kinase (PI3-kinase). Activation of PI3-kinase is indirect, perhaps through autocrine growth factors, and is required for the induction of cyclin D1.  相似文献   

17.
Fas-mediated apoptosis plays an important role in elimination of tumor cells in vivo, but some tumor-derived cells are resistant to this mechanism. Here, we show that treatment with the histone deacetylase (HDAC) inhibitor FR901228 renders Fas-resistant osteosarcoma cell lines sensitive to Fas-mediated apoptosis by downregulating expression of cellular FLIP (cellular FLICE-inhibitory protein), an inhibitor of Fas-mediated activation of caspase-8. Moreover, sensitization to Fas-mediated apoptosis was also induced in Fas-resistant osteosarcoma cells by suppressing FLIP expression using FLIP-specific RNA interference. HDAC inhibitors including FR901228 were shown to induce downregulation of cellular FLIP through inhibiting generation of FLIP mRNA, rather than stimulating degradation at either protein or mRNA level, and the inhibition was independent of de novo protein synthesis. These results clearly indicate that some tumor cells exhibit a phenotype resistant to death receptor-mediated apoptosis by expressing cellular FLIP, and that HDAC inhibitors sensitize such resistant tumor cells by directly downregulating cellular FLIP mRNA.  相似文献   

18.
In order to elucidate the role of the mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, as well as the survival-associated PI3K/Akt signaling pathway, in the response to chemotherapy, we have conducted a comparative study regarding the effects of doxorubicin on these pathways. Doxorubicin was determined to elicit the apoptosis of NIH3T3 cells in a dose-dependent manner. Prior to cell death, both Akt and p38 MAPK were transiently activated, and subsequently inactivated almost wholly, whereas ERK and JNK evidenced sustained activations in response to the drug treatment. The inhibition of PI3K/Akt and p38 MAPK both accelerated and enhanced doxorubicin-induced apoptosis and ERK inhibition apparently exerted negative effect on apoptosis. The modulation of PI3K/Akt activation by treatment of LY294002 or expression of Akt mutants such as Akt-DN or Myr-Akt exerted a significant effect on the activation of ERK1/2. We also observed that PI3K/Akt and sustained ERK activation were associated intimately with the etoposide-induced apoptosis. Taken together, our results clearly suggest that the differential regulation of the PI3K/Akt, ERK1/2, and p38 MAPK signaling pathways are crucial in the context of DNA-damaging drug-induced apoptosis, and this has compelled us to propose that the sustained activation of ERK1/2 pathway may be generally involved in the apoptosis induced by anticancer DNA-damaging drugs, including doxorubicin and etoposide.  相似文献   

19.
The density-dependent growth inhibition of non-transformed cells may be associated with inefficient transduction of the proliferative signal from cell adhesion molecules. To verify this concept, the C3H10T1/2 fibroblasts were stably transfected with the gene coding for the fibronectin fragment III/10 (FNIII/10). This resulted in differences in gene's expression between original C3H10T1/2 cells and their FNIII/10 transfectants. No significant differences in growth properties were observed in the original or in the transfected cells. C3H10T1/2 cells and their transfectants, when co-cultured, displayed more cells at confluence than the cells cultured alone. Moreover, co-cultured C3H10T1/2 cells and their transfectants showed elevated levels of phospho-ERK1/2 compared to homogenous cultures. Results obtained indicate that cellular homogeneity is responsible for density-dependent growth inhibition.  相似文献   

20.
The ERK1/2 MAPK pathway is a critical signaling system that mediates ligand-stimulated signals for the induction of cell proliferation, differentiation, and cell survival. Studies have shown that this pathway is constitutively active in several human malignancies and may be involved in the pathogenesis of these tumors. In the present study we examined the ERK1/2 pathway in cell lines derived from epithelial and granulosa cell tumors, two distinct forms of ovarian cancer. We show that ERK1 and ERK2 are constitutively active and that this activation results from both MAPK kinase-dependent and independent mechanisms and is correlated with elevated BRAF expression. MAPK phosphatase 1 (MKP-1) expression, which is involved in ERK1/2 deactivation, is down-regulated in the cancer cells, thus further contributing to ERK hyperactivity in these cells. Treatment of these cancer cell lines with the proteasome inhibitor ZLLF-CHO increased MKP-1 but not MKP-2 expression and decreased ERK1/2 phosphorylation. More importantly, silencing of ERK1/2 protein expression using RNA interference led to the complete suppression of tumor cell proliferation. These results provide evidence that the ERK pathway plays a major role in ovarian cancer pathogenesis and that down-regulation of this master signaling pathway is highly effective for the inhibition of ovarian tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号