首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
A new succinic acid and lactic acid production bioprocess by Corynebacterium crenatum was investigated in mineral medium under anaerobic conditions. Corynebacterium crenatum cells with sustained acid production ability and high acid volumetric productivity harvested from the glutamic acid fermentation broth were used to produce succinic acid and lactic acid. Compared with the first cycle, succinic acid production in the third cycle increased 120% and reached 43.4 g/L in 10 h during cell-recycling repeated fermentations. The volumetric productivities of succinic acid and lactic acid could maintain above 4.2 g/(L·h) and 3.1 g/(L·h), respectively, for at least 100 h. Moreover, wheat bran hydrolysates could be used for succinic acid and lactic acid production by the recycled C. crenatum cells. The final succinic acid concentration reached 43.6 g/L with a volumetric productivity of 4.36 g/(L·h); at the same time, 32 g/L lactic acid was produced.  相似文献   

2.
To perform the lipase-catalyzed synthesis of L-ascorbic acid derivatives from plant-based compounds such as cinnamic and ferulic acid under mild reaction conditions, the activities of immobilized Candida ntarctica lipase with different cinnamic acid esters and substituted cinnamic acids were compared. As a result, immobilized C. ntarctica lipase was found to prefer vinyl cinnamic acid to other esters such as allyl-, ethyl-, and isobutyl cinnamic acids as well as substituted cinnamic acids such as p-coumaric acid, caffeic acid, ferulic acid, and sinapic acid. Based on these results, large-scale synthesis of 6-O-cinnamyl-L-ascorbic acid ester was performed using immobilized C. ntarctica lipase in dry organic solvent, resulting in 68% yield (493 mg) as confirmed by 13C-NMR.  相似文献   

3.
Datura innoxia plants were fed the R- and S-isomers of [3-14C]-3-hydroxy-3-phenylpropanoic acid, and [3-14C]cinnamic acid along with dl-[4-3H]phenylalanine. The hyoscyamine and scopolamine isolated from the plants 7 days later were labeled with tritium, but devoid of 14C, indicating that 3-hydroxy-3-phenylpropanoic acid and cinnamic acid are not intermediates between phenylalanine and tropic acid. The [3H] tropic acid obtained by hydrolysis of the hyoscyamine was degraded and shown to have essentially all its tritium located at the para position of its phenyl group, a result consistent with previous work.  相似文献   

4.
1. α-[U-14C]Linolenic acid was incubated with the rumen contents of sheep and the metabolic products were characterized by thin-layer chromatography, gas–liquid chromatography and absorption spectroscopy in the ultraviolet and infrared. 2. A tentative scheme for the biohydrogenation route to stearic acid is presented. The main pathway is through diconjugated cisciscis-octadecatrienoic acid, non-conjugated transcis (cistrans)-octadecadienoic acid and trans-octadecenoic acid, but other pathways are apparent. 3. Washed rumen micro-organisms possessed only a limited capacity to hydrogenate α-linolenic acid and oleic acid but the rate was greatly stimulated by a factor(s) present in the supernatant rumen liquor. 4. Pure cultures of Clostridium perfringens, Streptococcus faecalis, Escherichia coli and a coliform organism isolated from sheep faeces possessed negligible ability to hydrogenate unsaturated fatty acids compared with a mixed population of rumen micro-organisms. Butyrivibrio fibrisolvens slowly converted linoleic acid into octadecenoic acid.  相似文献   

5.
Enhancement of acid resistance of Scenedesmus dimorphus by acid adaptation   总被引:1,自引:0,他引:1  
When using flue gas as carbon source for microalgae cultivation, the resulting acidic environment caused by SO X and NO X can inhibit microalgal growth. In this study, Scenedesmus dimorphus acquired increased acid resistance by prior exposure to sublethal acid stress; a process defined as acid adaptation. Among the five algal species tested, S. dimorphus showed the highest level of acid tolerance to extreme acid challenge (exposure to pH 3.0). Non-adapted and acid-adapted exponential algal cells were used as inocula for tubular photobioreactors aerated with 2 % CO2. Previously adapted at pH 4.0 for 1 h, S. dimorphus developed highest growth rate under extreme acidic condition, and the maximum biomass concentration and specific growth rate at pH 3.0 (3.638?±?0.074 g?L?1 and 1.037?±?0.008 d?1, respectively) were respectively 14.22 and 10.79 % higher than those of non-adapted cells. Moreover, acid-adapted cells could tolerate lower pH of 2.5, at which the growth of non-adapted cells was totally inhibited. All the results indicated that acid adaptation was an effective approach for the acid resistance enhancement of microalgae.  相似文献   

6.
Fermentation at low pH is an efficient way to improve the competitiveness of biological succinic acid-producing process. Actinobacillus succinogenes shows good performance of succinic acid production under anaerobic conditions, but its succinic acid production capability at the low-pH is inefficient due to the poor acid resistance. Herein, a mutant A. succinogenes BC-4 with improved cell growth and succinic acid production under weak acid conditions was obtained by adaptive evolution. The specific growth rate and succinic acid production of BC-4 reached 0.13 g/L/h and 20.77 g/L, which were increased by 3.25- and 2.95- fold, respectively compared with the parent strain under anaerobic condition at pH 5.8. The activities of specific enzymes with ATP generation were significantly enhanced under weak acidic conditions, resulting in 1.28-fold increase in the maximum ATP level. Membrane fatty acid composition analysis demonstrated that the ratio of saturated to unsaturated fatty acids was decreased from 1.62 to 1.44 in mutant BC-4, leading to improved intracellular pH homeostasis. Furthermore, the change from long-chain to median-chain fatty acid might lower the permeability of H+ into cytoplasm for survival under acid stress. These results indicated that A. succinogenes BC-4 is a promising candidate for succinic acid production under weak acid condition.  相似文献   

7.
The 67 kDa myosin-cross-reactive antigen (MCRA) is a member of the MCRA family of proteins present in a wide range of bacteria and was predicted to have fatty acid isomerase function. We have now characterised the catalytic activity of MCRAs from four LAB stains, including Lactobacillus rhamnosus LGG, L. plantarum ST-III, L. acidophilus NCFM and Bifidobacterium animalis subsp. lactis BB-12. MCRA genes from these strains were cloned and expressed in Escherichia coli, and the recombinant protein function was analysed with lipid profiles by GC–MS. The four MCRAs catalysed the conversion of linoleic acid and oleic acid to their respective 10-hydroxy derivatives, which suggests that MCRA proteins catalyse the first step in conjugated linoleic acid production. This is the first report of MCRA from L. rhamnosus with such catalytic function.  相似文献   

8.
Photocontrol of chlorogenic acid biosynthesis in potato tuber discs   总被引:2,自引:0,他引:2  
The appearance of phenylalanine ammonia-lyase activity and the accumulation of chlorogenic acid in potato tuber discs are stimulated by illumination with white light, whereas the appearance of cinnamic acid 4-hydroxylase activity is unaffected by illumination. The photosensitive step in chlorogenic acid biosynthesis may be by-passed by treatment of discs with exogenous supplies of cinnamic acid, whereas treatment of discs with phenylalanine does not isolate the photosensitive step. Therefore, the site of photocontrol of chlorogenic acid biosynthesis in potato tuber discs is the reaction catalysed by phenylalanine ammonia-lyase. Cinnamic acid 4-hydroxylase activity in vitro is unaffected by p-coumaric acid, caffeic acid or chlorogenic acid. Phenylalanine ammonia-lyase activity in vitro is sensitive to inhibition by cinnamic acid. The in vitro properties of the two enzymes are also consistent with the hypothesis that phenylalanine ammonia-lyase rather than cinnamic acid 4-hydroxylase is important in the regulation of chlorogenic acid biosynthesis in potato tuber discs.  相似文献   

9.
The cis-isomer of parinaric acid, a naturally occurring C-18 polyene fatty acid, was incubated with brain subcellular fractions and the polarization of fluorescence increased in a time dependent manner. Greatest increases occurred in synaptosomal and microsomal membranes. This increase in polarization of fluorescence was found with the cis, but not the trans, isomer of parinaric acid and required Mg2+ or Ca2+ and was stimulated by coenzyme A and ATP. Synaptosomes were incubated with cis-parinaric acid and lipids were extracted and examined by high performance liquid chromatography. The highest incorporations of cis-parinaric acid were found in phosphatidylcholine (71%) and phosphatidylethanolamine (20%) while only traces were found in phosphatidylserine and phosphatidylinositol. [3H]Oleic acid was also incorporated into membrane phospholipids and unlabeled oleic acid blocked incorporation of cis-parinaric acid. It is proposed that cis-parinaric acid, like fatty acids normally found in brain, is incorporated into membrane phospholipids by an acyl-CoA acyltransferase. The presence of this enzyme in nervous tissue may make it possible to easily introduce fluorescent fatty acid probes into membrane phospholipids and to thereby facilitate study of membrane-mediated processes.  相似文献   

10.
Benzoic acid, p-tert.-butylbenzoic acid, and a structurally related hypolipidemic agent SC-33459 were found to inhibit glucose synthesis by hepatocytes isolated from 48-h fasted rats as well as fatty acid synthesis by hepatocytes isolated from meal-fed rats. Glucose synthesis was less sensitive than fatty acid synthesis. Benzoic acid was the least effective inhibitor of both processes; SC-33459 and p-tert.-butylbenzoic acid were very potent inhibitors with similar efficacy. Glycine prevented the inhibition of fatty acid synthesis caused by benzoic acid, but had no effect on that caused by p-tert.-butylbenzoic acid. Octanoate opposed the inhibitory effects of both benzoic acid and p-tert.-butylbenzoic acid. Oxidation of [1-14C]oleate to ketone bodies and acid-soluble radioactive products was inhibited by both p-tert.-butylbenzoic acid and SC-33459. Preincubation of hepatocytes with SC-33459 was required for the latter effect, suggesting catabolism of this compound may be involved. SC-33459 is a p-tert.-butylphenyl derivative which should be readily converted to p-tert.-butylbenzoic acid by β oxidation. Both p-tert.-butylbenzoic acid and SC-33459 decreased citrate levels dramatically. All three compounds reduced CoA and acetyl-CoA levels and increased medium-chain acyl-CoA ester levels. p-tert.-Butylbenzoic acid and SC-33459 also increased long-chain acyl-CoA ester levels. The increase in medium-chain acyl-CoA levels presumably reflects benzoyl-CoA formation from benzoic acid and p-tert.-butylbenzoyl-CoA formation from p-tert.-butylbenzoic acid and SC-33459. Inhibition of glucose and fatty acid synthesis by these compounds may be due to effects on specific enzymes or to CoA sequestration.  相似文献   

11.
The preparation of mixed-acid phospholipids is possible in high yields from 1.2-dipalmitoyl-sn-glycerol-3-phosphoric acid bromoalkyl esters. The fatty acid in the 2-position of these general intermediates for phospholipid synthesis was completely removed by hyrolysis with phospholipase A2. The resulting 1-palmitoyl-sn-glycerol-3-phosphoric acid bromoalkyl esters were reacylated in high yields with fatty acid anhydrides in the presence of perchloric acid. Transformation of the mixed-acid phosphatidic acid bromoalkyl esters to the respective phosphatidyl cholines or -ethanolamines was possible by direct amination.  相似文献   

12.
Screening for microorganisms converting stearic acid to form new compounds was conducted, Pseudomonas cepacia A-1419 isolated from soil effectively produced two compounds showing strong ultraviolet absorption when the resting cells were incubated with stearic acid. The products were isolated, and identified as (Z)-dec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (Product 1) and (Z)-dodec-3-ene-1,3,4-tricarboxylic acid 3,4-anhydride (Product 2) by infrared, mass, and nuclear magnetic resonance spectroscopies, and elemental analysis. Products 1 and 2 were produced from stearic acid at conversion rates of about 18 and 32%, respectively.  相似文献   

13.
The hydroxyfatty acid polymer, cutin, is the structural component of plant cuticle. Combined gas chromatography-mass spectrometry of the hydrogenolysis and deuterolysis products of rosemary cutin (Rosmarinus officinalis) revealed a series of components suggesting the conversion of linoleic acid to 9,10,12,13,18-pentahydroxy-stearic acid. [U-14C]Linoleic acid was incorporated into the insoluble residue of rapidly expanding rosemary leaves. Depolymerization of the insoluble material followed by isolation of individual components and chemical degradation studies showed that linoleic acid was directly converted into 18-hydroxylinoleic acid, 18-hydroxy-9, 10-epoxyoctadec-12-enoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, 9,10,18-trihydroxy-12,13-epoxystearic acid, and 9,10,12,13,18-pentahydroxystearic acid. These results strongly suggest that, in the biosynthesis of the phytopolymer, linoleic acid is first converted into 18-hydroxylinoleic acid and that this precursor then undergoes sequential epoxidation-hydration at the Δ9 and Δ12 double bonds to yield 9,10,12,13,18-pentahydroxystearic acid.  相似文献   

14.
Betulinic acid is a plant-based triterpenoid that has been recognized for its antitumor and anti-HIV activities. The level of betulinic acid in its natural hosts is extremely low. In the present study, we constructed betulinic acid biosynthetic pathway in Saccharomyces cerevisiae by metabolic engineering. Given the betulinic acid forming pathways sharing the common substrate acetyl-CoA with fatty acid synthesis, the metabolic fluxes between the two pathways were varied by changing gene expressions, and their effects on betulinic acid production were investigated. We constructed nine S. cerevisiae strains representing nine combinations of the flux distributions between betulinic acid and fatty acid pathways. Our results demonstrated that it was possible to improve the betulinic acid production in S. cerevisiae while keeping a desirable growth phenotype by optimally balancing the carbon fluxes of the two pathways. Through modulating the expressions of the key genes on betulinic acid and fatty acid pathways, the difference in betulinic acid yield varied largely in the range of 0.01–1.92 mg L?1 OD?1. The metabolic engineering approach used in this study could be extended for synthesizing other triterpenoids in S. cerevisiae.  相似文献   

15.
Although α-linolenic acid is nearly absent from Cyanidium caldarium cultured at 53 °C, it is the most abundant unsaturated fatty acid in 20 °C-grown cells. A sudden growth temperature shift of 55 to 25 °C does not stimulate the immediate biosynthesis of α-linolenic acid. However, after an induction period of 48 h, synthesis of α-linolenic acid from acetate can be detected, and the fatty acid accumulates in phosphatidyl choline and sulfolipid. The newly synthesized α-linolenic acid appears to be formed primarily by de novo synthesis and to a much lesser extent from the elongation of a previously formed hexadecatrienoic acid precursor. On the other hand, when a cell-free algal preparation was presented with a hexadecatrienoic acid precursor in the presence of [14C] malonyl-CoA, the α-linolenic acid formed demonstrated a synthesis by elongation of the precursor. While the cell appears enzymatically capable of α-linolenic acid biosynthesis by both the de novo and elongation processes, de novo synthesis of α-linolenic acid appears to be the more significant mode of synthesis.  相似文献   

16.
Ascorbalamic acid (C9H13NO8) was isolated from Brassica olerocea L. MS study of various methylated derivatives suggested a structure (Ia) derivable by CC coupling of C-3 of alanine with C-2 of ascorbic acid, followed by lactone → lactam rearrangement. Other derivatives provided supporting evidence, as did study of the reaction of L-3-chloroalanine with L-ascorbic acid in vitro. On treatment with hot 6 M HCl, ascorbalamic acid yielded L-aspartic acid and 3-(2-furoyl)alanine. For identification of the latter, DL-3-(2-furoyl)alanine and its N-2,4-dinitrophenyl and N-acetyl methyl ester derivatives were synthesized. Unlike ascorbigens, ascorbalamic acid is probably present in the living plant. It seemed to be present in all crucifers examined, but to have a capricious distribution in other orders. During permethylation, rearrangements of ester groups were observed, both with ascorbalamic acid and with pyrrolidonecarboxylic acid as a model.  相似文献   

17.
18.
A gas chromatographic-mass spectrometric method is described for the assay of propionic acid and of isovaleric acid in physiological fluids by isotope dilution. The acids are derivatized to the pentafluorobenzyl esters to decrease volatility to render them suitable for GC-MS analysis. The following reference values were found. Propionic acid: plasma 0.54 ± 0.38 μmol/1 (n = 13, range 0.03–1.38 μmol/1), urine 1.7±1.6 μmol/mmol creatinine (n = 9, range 0.1–4.9 μmol/mmol creatinine). Isovaleric acid: plasma 0.89+−0.93 μmol/1 (n = 10, range 0.01–3.03 μmol/1), urine 0.38+−0.51 μmol/mmol creatinine (n = 10, range 0.01–1.70 μmol/mmol creatinine).  相似文献   

19.
The CH2Cl2 and MeOH extracts from leaves of Piper caldense were subjected to chromatographic separation procedures to afford the new prenylated benzoic acid, caldensinic acid (3-[(2′E,6′E,10′E)-11′-carboxy-3′,7′,15′-trimethylhexadeca-2′,6′,10′,14′-tetraenyl]-4,5-dihydroxybenzoic acid) whose structure was determined by spectral analysis, mainly NMR (1H, 13C, HSQC, HMBC) and ESI-MS. The natural compound and derivatives displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum by direct bioautography.  相似文献   

20.
d-Lactic acid and pyruvic acid are two important building block intermediates. Production of d-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l?1 of Pseudomonas stutzeri SDM could catalyze 45.00 g l?1 dl-lactic acid into 25.23 g l?1 d-lactic acid and 19.70 g l?1 pyruvic acid in 10 h. Using a simple ion exchange process, d-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号