首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor tyrosine kinases (RTKs) are proteins that upon ligand stimulation undergo dimerization and autophosphorylation. Eph receptors (EphRs) are RTKs that are found in different cell types, from both tissues that are developing and from mature tissues, and play important roles in the development of the central nervous system and peripheral nervous system. EphRs also play roles in synapse formation, neural crest formation, angiogenesis and in remodeling the vascular system. Interaction of EphRs with their ephrin ligands lead to activation of signal transduction pathways and formation of many transient protein-protein interactions that ultimately leads to cytoskeletal remodeling. However, the sequence of events at the molecular level is not well understood. We used blue native PAGE and MS to analyze the transient protein-protein interactions that resulted from the stimulation of EphB2 receptors by their ephrinB1-Fc ligands. We analyzed the phosphotyrosine-containing protein complexes immunoprecipitated from the cell lysates of both unstimulated (-) and ephrinB1-Fc-stimulated (+) NG108 cells. Our experiments allowed us to identify many signaling proteins, either known to be part of EphB2 signaling or new for this pathway, which are involved in transient protein-protein interactions upon ephrinB1-Fc stimulation. These data led us to investigate the roles of proteins such as FAK, WAVEs and Nischarin in EphB2 signaling.  相似文献   

2.
Receptor tyrosine kinases (RTKs) activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs), which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC) analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK.  相似文献   

3.
Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein-protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein-protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein-protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein-protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein-protein interactions in a dynamic context- and phosphorylation site-specific manner.  相似文献   

4.
The receptor for the macrophage colony stimulating factor-1 (CSF-1R) is a transmembrane glycoprotein with intrinsic tyrosine kinase activity. CSF-1 stimulation promotes the growth of cells of the macrophage lineage and of fibroblasts engineered to express CSF-1R. We show that CSF-1 stimulation resulted in activation of three Src family kinases, Src, Fyn and Yes. Concomitant with their activation, all three Src family kinases were found to associate with the ligand-activated CSF-1 receptor. These interactions were also demonstrated in SF9 insect cells co-infected with viruses encoding the CSF-1 receptor and Fyn, and the isolated SH2 domain of Fyn was capable of binding the CSF-1R in vitro. Analysis of mutant CSF-1Rs revealed that the 'kinase insert' (KI) domain of CSF-1R was not required for interactions with Src family kinases, but that mutation of one of the receptor autophosphorylation sites, Tyr809, reduced both their binding and enzymatic activation. Because fibroblasts expressing this receptor mutant are unable to form colonies in semi-solid medium or to grow in chemically defined medium in the presence of CSF-1, the Src family kinases may play a physiological role in the mitogenic response to CSF-1.  相似文献   

5.
The architecture of cellular proteins connected to form signaling pathways in response to internal and external cues is much more complex than a group of simple protein-protein interactions. Post translational modifications on proteins (e.g., phosphorylation of serine, threonine and tyrosine residues on proteins) initiate many downstream signaling events leading to protein-protein interactions and subsequent activation of signaling cascades leading to cell proliferation, cell differentiation and cell death. As evidenced by a rapidly expanding mass spectrometry database demonstrating protein phosphorylation at specific motifs, there is currently a large gap in understanding the functional significance of phosphoproteins with respect to their specific protein connections in the signaling cascades. A comprehensive map that interconnects phospho-motifs in pathways will enable identification of nodal protein interactions that are sensitive signatures indicating a disease phenotype from the physiological hemostasis and provide clues into control of disease. Using a novel phosphopeptide microarray technology, we have mapped endogenous tyrosine-phosphoproteome interaction networks in breast cancer cells mediated by signaling adaptor protein GRB2, which transduces cellular responses downstream of several RTKs through the Ras-ERK signaling cascade. We have identified several previously reported motif specific interactions and novel interactions. The peptide microarray data indicate that various phospho-motifs on a single protein are differentially regulated in various cell types and shows global downregulation of phosphoprotein interactions specifically in cells with metastatic potential. The study has revealed novel phosphoprotein mediated signaling networks, which warrants further detailed analysis of the nodes of protein-protein interaction to uncover their biomarker or therapeutic potential.  相似文献   

6.
Cascades of kinases and phosphatases are regulated by selective protein-protein interactions that are essential for signal transduction. Peptide modulators of these interactions have been used to dissect the function of individual components of the signaling cascade, without relying on either the over- or underexpression of proteins. Previously, we identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src tyrosine kinases. Here, we utilized cell-permeable peptides that selectively disrupt or enhance the interaction of RACK1 and Src to further examine the function of RACK1. Our results provide direct physiologic evidence that RACK1 regulates growth of NIH3T3 cells by suppressing the activity of Src and other cell cycle regulators in G1, and delaying entry into S phase. They also demonstrate the potential for using peptide modulators of Src activity as a tool for regulating cell growth, and for designing new strategies for cancer therapy that target specific protein-protein interactions.  相似文献   

7.
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.  相似文献   

8.
The FKBP12-rapamycin associated protein (FRAP, also RAFT, mTOR) belongs to a family of phosphatidylinositol kinase-related kinases. These kinases mediate cellular responses to stresses such as DNA damage and nutrient deprivation in a variety of eukaryotes from yeast to humans. FRAP regulates G(1) cell cycle progression and translation initiation in part by controlling the phosphorylation states of a number of translational and cell cycle regulators. Although FRAP is known to be phosphorylated in vivo and to phosphorylate several proteins (including itself) in vitro, FRAP's phosphorylation sites and substrate specificity are unknown. We report here the identification of a FRAP autophosphorylation site. This site, Ser-2481, is located in a hydrophobic region near the conserved carboxyl-terminal FRAP tail. We demonstrate that the COOH-terminal tail is required for FRAP kinase activity and for signaling to the translational regulator p70(s6k) (ribosomal subunit S6 kinase). Phosphorylation of wild-type but not kinase-inactive FRAP occurs at Ser-2481 in vivo, suggesting that Ser-2481 phosphorylation is a marker of FRAP autokinase activity in cells. FRAP autophosphorylation is blocked completely by wortmannin treatment but not by rapamycin treatment, amino acid deprivation, or serum withdrawal, treatments that lead to acute dephosphorylation of eIF4E-binding protein (4E-BP1) and p70(s6k). Ser-2481 phosphorylation increases slightly upon c-Akt/PKB activation and dramatically upon calyculin A treatment of T-cells. These results suggest that FRAP-responsive dephosphorylation of 4E-BP1 and p70(s6k) occurs through a mechanism other than inhibition of intrinsic FRAP kinase activity.  相似文献   

9.
It is known that some kinase inhibitors are sensitive to the phosphorylation state of the kinase, and therefore those compounds can discriminate between a phosphorylated and unphosphorylated protein. In this study, we prepared two colony stimulating factor-1 receptor (CSF-1R) tyrosine kinase proteins: one highly phosphorylated by autophosphorylation and the other dephosphorylated by phosphatase treatment. These kinases were subjected to an activity-based assay to investigate the effect of their phosphorylation state on the potency of several kinase inhibitors. Dasatinib, sorafenib, PD173074 and staurosporine showed similar inhibition against different phosphorylation states of CSF-1R, but pazopanib, sunitinib, GW2580 and imatinib showed more potent inhibition against dephosphorylated CSF-1R. Binding analysis of the inhibitors to the two different phosphorylation forms of CSF-1R, using surface plasmon resonance spectrometry, revealed that staurosporine bound to both forms with similar affinity, but sunitinib bound to the dephosphorylated form with higher affinity. Thus, these observations suggest that sunitinib binds preferentially to the inactive form, preventing the activation of CSF-1R. Screening against different activation states of kinases should be an important approach for prioritizing compounds and should facilitate inhibitor design.  相似文献   

10.
The receptor for the myeloid cell growth factor colony stimulating factor 1 (CSF-1) is a protein tyrosine kinase that is closely related to the PDGF receptor. Ligand binding results in kinase activation and autophosphorylation. Three autophosphorylation sites, Tyr697, Tyr706 and Tyr721, have been mapped to the kinase insert domain. Deletion of the entire kinase insert domain completely abrogates signal transduction by the CSF-1 receptor expressed in Rat-2 fibroblasts. To investigate the function of individual phosphorylation sites present in the CSF-1 receptor kinase insert domain, a number of phosphorylation site mutants were expressed in Rat-2 fibroblasts. Mutation of either Tyr697 or Tyr721 compromised signal transduction by the CSF-1 receptor. A mutant receptor, in which both Tyr697 and Tyr721 were replaced by phenylalanine, has lost all ability to induce changes in morphology or to increase cell growth rate in response to CSF-1. Tyr721 has been identified recently as the binding site for PI 3-kinase. Here we report that GRB2 associates with the CSF-1 receptor upon ligand binding. The phosphorylation on tyrosine of SHC and several other GRB2-associated proteins increased upon stimulation with CSF-1. Tyr697 was identified as a binding site for GRB2. We suggest that PI 3-kinase, GRB2 and some of the GRB2-associated proteins could play an important role in signal transduction by the CSF-1 receptor.  相似文献   

11.
c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.  相似文献   

12.
Leucine‐rich repeat receptor‐like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single‐pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for a full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high‐throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. We used His‐tagged constructs of complete cytoplasmic domains to identify a total of 592 phosphorylation events across 73 LRR RLKs, with 497 sites uniquely assigned to specific Ser (268 sites) or Thr (229 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains and to derive a statistically significant sequence motif for phospho‐Ser autophosphorylation.  相似文献   

13.
Recent literature implicates a regulatory function of the juxtamembrane domain (JMD) in receptor tyrosine kinases. Mutations in the JMD of c-Kit and Flt3 are associated with gastrointestinal stromal tumors and acute myeloid leukemias, respectively. Additionally, autophosphorylated Tyr559 in the JMD of the colony stimulating factor-1 (CSF-1) receptor (CSF-1R) binds to Src family kinases (SFKs). To investigate SFK function in CSF-1 signaling we established stable 32D myeloid cell lines expressing CSF-1Rs with mutated SFK binding sites (Tyr559-TFI). Whereas binding to I562S was not significantly perturbed, Y559F and Y559D exhibited markedly decreased CSF-1-dependent SFK association. All JMD mutants retained intrinsic kinase activity, but Y559F, and less so Y559D, showed dramatically reduced CSF-1-induced autophosphorylation. CSF-1-mediated wild-type (WT)-CSF-1R phosphorylation was not markedly affected by SFK inhibition, indicating that lack of SFK binding is not responsible for diminished Y559F phosphorylation. Unexpectedly, cells expressing Y559F were hyperproliferative in response to CSF-1. Hyperproliferation correlated with prolonged activation of Akt, ERK, and Stat5 in the Y559F mutant. Consistent with a defect in receptor negative regulation, c-Cbl tyrosine phosphorylation and CSF-1R/c-Cbl co-association were almost undetectable in the Y559F mutant. Furthermore, Y559F underwent reduced multiubiquitination and delayed receptor internalization and degradation. In conclusion, we propose that Tyr559 is a switch residue that functions in kinase regulation, signal transduction and, indirectly, receptor down-regulation. These findings may have implications for the oncogenic conversion of c-Kit and Flt3 with JMD mutations.  相似文献   

14.
Isotype-specific functions of Raf kinases   总被引:16,自引:0,他引:16  
The family of Raf-protein kinases consisting of A-Raf, B-Raf, and c-Raf-1 is involved in cellular processes which regulate proliferation, differentiation, and apoptosis. Cell-culture experiments and the knockout of individual Raf genes suggested that the three Raf isoforms have overlapping and unique regulatory functions. However, it is not known how these isotype-specific functions of Raf kinases occur in the cell. Published data suggest that Raf proteins might differ in the regulation of their activation as well as in their ability to connect to downstream signaling pathways. Since Raf is part of a multiprotein complex and protein-protein interactions are important for Raf signaling, we propose that isotype-specific functions can be achieved by isotype-restricted protein binding. Recently we were able to identify candidates for such Raf-isoform-specific interaction partners.  相似文献   

15.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

16.
ABSTRACT: BACKGROUND: Mathematical/computational models are needed to understand cell signaling networks, which are complex. Signaling proteins contain multiple functional components and multiple sites of post-translational modification. The multiplicity of components and sites of modification ensures that interactions among signaling proteins have the potential to generate myriad protein complexes and post-translational modification states. As a result, the number of chemical species that can be populated in a cell signaling network, and hence the number of equations in an ordinary differential equation model required to capture the dynamics of these species, is prohibitively large. To overcome this problem, the rule-based modeling approach has been developed for representing interactions within signaling networks efficiently and compactly through coarse-graining of the chemical kinetics of molecular interactions. RESULTS: Here, we provide a demonstration that the rule-based modeling approach can be used to specify and simulate a large model for ERBB receptor signaling that accounts for site-specific details of protein-protein interactions. The model is considered large because it corresponds to a reaction network containing more reactions than can be practically enumerated. The model encompasses activation of ERK and Akt, and it can be simulated using a network-free simulator, such as NFsim, to generate time courses of phosphorylation for 55 individual serine, threonine, and tyrosine residues. The model is annotated and visualized in the form of an extended contact map. CONCLUSIONS: With the development of software that implements novel computational methods for calculating the dynamics of large-scale rule-based representations of cellular signaling networks, it is now possible to build and analyze models that include a significant fraction of the protein interactions that comprise a signaling network, with incorporation of the site-specific details of the interactions. Modeling at this level of detail is important for understanding cellular signaling.  相似文献   

17.
Vasilescu J  Guo X  Kast J 《Proteomics》2004,4(12):3845-3854
The purification of protein complexes can be accomplished by different types of affinity chromatography. In a typical immunoaffinity experiment, protein complexes are captured from a cell lysate by an immobilized antibody that recognizes an epitope on one of the known components of the complex. After extensive washing to remove unspecifically bound proteins, the complexes are eluted and analyzed by mass spectrometry (MS). Transient complexes, which are characterized by high dissociation constants, are typically lost by this approach. In the present study, we describe a novel method for identifying transient protein-protein interactions using in vivo cross-linking and MS-based protein identification. Live cells are treated with formaldehyde, which rapidly permeates the cell membrane and generates protein-protein cross-links. Proteins cross-linked to a Myc-tagged protein of interest are copurified by immunoaffinity chromatography and subjected to a procedure which dissociates the cross-linked complexes. After separation by SDS-PAGE, proteins are identified by tandem mass spectrometry. Application of this method enabled the identification of numerous proteins that copurified with a constitutively active form of M-Ras (M-Ras(Q71L)). Among these, we identified the RasGAP-related protein IQGAP1 to be a novel interaction partner of M-Ras(Q71L). This method is applicable to many proteins and will aid in the study of protein-protein interactions.  相似文献   

18.
Calcium-dependent protein kinases (CDPKs) are a novel class of signaling molecules that have been broadly implicated in relaying specific calcium-mediated responses to biotic and abiotic stress as well as developmental cues in both plants and protists. Calcium-dependent autophosphorylation has been observed in almost all CDPKs examined, but a physiological role for autophosphorylation has not been demonstrated. To date, only a handful of autophosphorylation sites have been mapped to specific residues within CDPK amino acid sequences. In an attempt to gain further insight into this phenomenon, we have mapped autophosphorylation sites and compared these phosphorylation patterns among multiple CDPK isoforms. From eight CDPKs and two CDPK-related kinases from Arabidopsis thaliana and Plasmodium falciparum, 31 new autophosphorylation sites were characterized, which in addition to the previously described sites, allowed the identification of five conserved loci. Of the 35 total sites analyzed approximately one-half were observed in the N-terminal variable domain. Homology models were generated for the protein kinase and calmodulin-like domains, each containing two of the five conserved sites, to allow intelligent speculation regarding subsequent lines of investigation.  相似文献   

19.
We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches.  相似文献   

20.
光是植物的唯一能量来源, 植物在进化过程中产生不同的光敏色素来感知光信号。光信号通路中元件通常被特异翻译后修饰调节。光敏色素是一种自磷酸化的丝氨酸/苏氨酸蛋白激酶, 可以被一些蛋白磷酸酶去磷酸化。通过对光敏色素A (phyA)和光敏色素B (phyB)的自磷酸化位点研究, 发现自磷酸化对光敏色素的功能及其介导的信号通路起着非常重要的作用。光激活的光敏色素诱导光敏色素作用因子(PIF)磷酸化, 这对于PIF的正常降解及光形态建成的起始是必需的。该文主要介绍了光敏色素信号通路磷酸化修饰的最新进展, 以期为深入研究光敏色素信号转导机制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号