首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.  相似文献   

2.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.Key words: DNA repair, nervous system, neurodegeneration, DNA ligase III, DNA damage, XRCC1, mitochondria, mtDNA  相似文献   

3.
XRCC1, the human gene that fully corrects the Chinese hamster ovary DNA repair mutant EM9, encodes a protein involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation. In this study, a cDNA minigene encoding oligohistidine-tagged XRCC1 was constructed to facilitate affinity purification of the recombinant protein. This construct, designated pcD2EHX, fully corrected the EM9 phenotype of high sister chromatid exchange, indicating that the histidine tag was not detrimental to XRCC1 activity. Affinity chromatography of extract from EM9 cells transfected with pcD2EHX resulted in the copurification of histidine-tagged XRCC1 and DNA ligase III activity. Neither XRCC1 or DNA ligase III activity was purified during affinity chromatography of extract from EM9 cells transfected with pcD2EX, a cDNA minigene that encodes untagged XRCC1, or extract from wild-type AA8 or untransfected EM9 cells. The copurification of DNA ligase III activity with histidine-tagged XRCC1 suggests that the two proteins are present in the cell as a complex. Furthermore, DNA ligase III activity was present at lower levels in EM9 cells than in AA8 cells and was returned to normal levels in EM9 cells transfected with pcD2EHX or pcD2EX. These findings indicate that XRCC1 is required for normal levels of DNA ligase III activity, and they implicate a major role for this DNA ligase in DNA base excision repair in mammalian cells.  相似文献   

4.
Proteins involved in DNA repair, or its coordination with DNA replication and mitosis through cell cycle checkpoints, are vital in the concerted cellular response to DNA damage that maintains the integrity of the genome. The "BRCT" domain (BRCA1 carboxy terminal) was noted as a putative protein-protein interaction motif in the breast cancer suppressor gene, BRCA1, and subsequently identified in over 50 proteins involved in DNA repair, recombination, or cell cycle control. The heterodimer of the DNA repair proteins, XRCC1 and DNA ligase III, was the first example of a functional interaction via BRCT modules. The only three-dimensional crystal structure of a BRCT domain was solved for this region of XRCC1. Key amino acid residues mediating the interaction with DNA ligase III were identified here by targeted mutagenesis of the XRCC1 BRCT domain. The consequences of these mutations on protein folding were assessed. A structural model of the DNA ligase III BRCT domain was constructed and similarly tested by mutation of corresponding residues required for the interaction with XRCC1. These data identify the XRCC1-DNA ligase III heterodimer interface and provide the first demonstration of the surface contacts coordinating a functional BRCT-BRCT protein interaction.  相似文献   

5.
Base loss is common in cellular DNA, resulting from spontaneous degradation and enzymatic removal of damaged bases. Apurinic/apyrimidinic (AP) endonucleases recognize and cleave abasic (AP) sites during base excision repair (BER). APE1 (REF1, HAP1) is the predominant AP endonuclease in mammalian cells. Here we analyzed the influences of APE1 on the human BER pathway. Specifically, APE1 enhanced the enzymatic activity of both flap endonuclease1 (FEN1) and DNA ligase I. FEN1 was stimulated on all tested substrates, regardless of flap length. Interestingly, we have found that APE1 can also inhibit the activities of both enzymes on substrates with a tetrahydrofuran (THF) residue on the 5'-downstream primer of a nick, simulating a reduced abasic site. However once the THF residue was displaced at least a single nucleotide, stimulation of FEN1 activity by APE1 resumes. Stimulation of DNA ligase I required the traditional nicked substrate. Furthermore, APE1 was able to enhance overall product formation in reconstitution of BER steps involving FEN1 cleavage followed by ligation. Overall, APE1 both stimulated downstream components of BER and prevented a futile cleavage and ligation cycle, indicating a far-reaching role in BER.  相似文献   

6.
Impaired gap filling and sealing of chromosomal DNA in nucleotide excision repair (NER) leads to genome instability. XRCC1-DNA ligase IIIalpha (XRCC1-Lig3) plays a central role in the repair of DNA single-strand breaks but has never been implicated in NER. Here we show that XRCC1-Lig3 is indispensable for ligation of NER-induced breaks and repair of UV lesions in quiescent cells. Furthermore, our results demonstrate that two distinct complexes differentially carry out gap filling in NER. XRCC1-Lig3 and DNA polymerase delta colocalize and interact with NER components in a UV- and incision-dependent manner throughout the cell cycle. In contrast, DNA ligase I and DNA polymerase varepsilon are recruited to UV-damage sites only in proliferating cells. This study reveals an unexpected and key role for XRCC1-Lig3 in maintenance of genomic integrity by NER in both dividing and nondividing cells and provides evidence for cell-cycle regulation of NER-mediated repair synthesis in vivo.  相似文献   

7.
Li N  Wu H  Yang S  Chen D 《DNA Repair》2007,6(9):1297-1306
Neuronal protection induced by ischemic preconditioning has an important role in the reduction of stroke volume and attenuation of neuronal cell death. Ischemic injury is associated with increased oxidative DNA damage, and failure to efficiently repair these oxidatively damaged lesions results in the accumulation of mutations and neuronal cell death. Although the effects of ischemic tolerance can have profound implications, the precise mechanisms mediating this phenomenon remain unclear. The base excision repair (BER) pathway has a major role in the repair of oxidative DNA base damage after ischemic injury. Using a rat model of ischemic preconditioning, we now report that the neuronal protection observed after induction of ischemic tolerance is associated with increased BER. In situ detection of single-strand breaks and apurinic/apyrimidinic sites reduced to baseline levels after reperfusion following ischemic preconditioning. By contrast, no change was seen in the quantity of in situ lesions after reperfusion in non-ischemic preconditioned brain. Induction of the BER proteins XRCC1, DNA polymerase-beta, and DNA ligase III was seen after reperfusion in ischemically conditioned brain. Moreover, an increase in binding between XRCC1 and DNA polymerase-beta was seen under these conditions, as might be expected during formation of functional BER complexes. Using in vitro BER oligonucleotides, we directly demonstrated an increase in total BER capacity of nuclear extracts prepared from ischemic-conditioned brain after reperfusion compared with sham-operated brain. These findings provide direct evidence that increased BER is associated with the neuroprotection induced after ischemic preconditioning, and provides important new mechanistic insight into the important biologic pathways that protect neurons against irreversible ischemic injury.  相似文献   

8.
The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than a single end-joining mechanism. While searching for a DNA-PK-independent end-joining activity, we found that the pretreatment of DNA-PK-proficient and -deficient rodent cells with an inhibitor of the poly(ADP-ribose) polymerase-1 enzyme (PARP-1) led to increased cytotoxicity of the highly efficient DNA double-strand breaking compound calicheamicin gamma1. In addition, the repair kinetics of the DSBs induced by calicheamicin gamma1 was delayed both in PARP-1-proficient cells pretreated with the PARP-1 inhibitor and in PARP-1-deficient cells. In order to get new insights into the mechanism of an alternative route for DSBs repair, we have established a new synapsis and end-joining two-step assay in vitro, operating on DSBs with either nuclear protein extracts or recombinant proteins. We found an end-joining activity independent of the DNA-PK/XRCC4-ligase IV complex but that actually required a novel synapsis activity of PARP-1 and the ligation activity of the XRCC1-DNA ligase III complex, proteins otherwise involved in the base excision repair pathway. Taken together, these results strongly suggest that a PARP-1-dependent DSBs end-joining activity may exist in mammalian cells. We propose that this mechanism could act as an alternative route of DSBs repair that complements the DNA-PK/XRCC4/ligase IV-dependent nonhomologous end-joining.  相似文献   

9.
The human DNA repair protein XRCC1 was overexpressed as a histidine-tagged polypeptide (denoted XRCC1-His) in Escherichia coli and purified in milligram quantities by affinity chromatography. XRCC1-His complemented the mutant Chinese hamster ovary cell line EM9 when constitutively expressed from a plasmid or when introduced by electroporation. XRCC1-His directly interacted with human DNA ligase III in vitro to form a complex that was resistant to 2 M NaCl. XRCC1-His interacted equally well with DNA ligase III from Bloom syndrome, HeLa and MRC5 cells, indicating that Bloom syndrome DNA ligase III is normal in this respect. Detection of DNA ligase III on far Western blots by radiolabelled XRCC1-His indicated that the level of the DNA ligase polypeptide was reduced approximately 4-fold in the mutant EM9 and also in EM-C11, a second member of the XRCC1 complementation group. Decreased levels of polypeptide thus account for most of the approximately 6-fold reduced DNA ligase III activity observed previously in EM9. Immunodetection of XRCC1 on Western blots revealed that the level of this polypeptide was also decreased in EM9 and EM-C11 (> 10-fold), indicating that the XRCC1-DNA ligase III complex is much reduced in the two CHO mutants.  相似文献   

10.
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts.  相似文献   

11.
Mitochondrial DNA ligase III function is independent of Xrcc1   总被引:2,自引:1,他引:1       下载免费PDF全文
Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function would also be dependent upon Xrcc1. However, several lines of evidence indicate that this is not the case. First, western blot analysis failed to detect Xrcc1 protein in mitochondrial extracts. Second, DNA ligase III levels present in mitochondrial protein extracts from EM9 cells were indistinguishable from those seen in similar extracts from wild-type (AA8) cells. Third, the mitochondrial DNA content of both cell lines was identical. Fourth, EM9 cells displayed no defect in their ability to repair spontaneous mitochondrial DNA damage. Fifth, while EM9 cells were far more sensitive to the cytotoxic effects of ionizing radiation due to a defect in nuclear DNA repair, there was no apparent difference in the ability of EM9 and AA8 cells to restore their mitochondrial DNA to pre-irradiation levels. Thus, mitochondrial DNA ligase III function is independent of the Xrcc1 protein.  相似文献   

12.
Wang Y  Lamarche BJ  Tsai MD 《Biochemistry》2007,46(17):4962-4976
In addition to linking nicked/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance/intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III/XRCC1 complex (general DNA repair) have been shown to be relatively intolerant of nicks containing mismatched base pairs, the human DNA ligase IV/XRCC4 complex has not been studied in this regard. Ligase IV/XRCC4 is the sole DNA ligase involved in the repair of double strand breaks (DSBs) via the non-homologous end joining (NHEJ) pathway. During the repair of DSBs generated by chemical/physical damage as well as the repair of the programmed DSB intermediates of V(D)J recombination, there are scenarios where, at least conceptually, a capacity for ligating nicks containing mismatched base pairs would appear to be advantageous. Herein we examine whether ligase IV/XRCC4 can contribute a mismatched nick ligation activity to NHEJ. Toward this end, we (i) describe an E. coli-based coexpression system that provides relatively high yields of the ligase IV/XRCC4 complex, (ii) describe a unique rate-limiting step, which has bearing on how the complex is assayed, (iii) specifically analyze how XRCC4 influences ligase IV catalysis and substrate specificity, and (iv) probe the mismatch tolerance/intolerance of DNA ligase IV/XRCC4 via quantitative in vitro kinetic analyses. Analogous to most other DNA ligases, ligase IV/XRCC4 is shown to be fairly intolerant of nicks containing mismatched base pairs. These results are discussed in light of the biological roles of NHEJ.  相似文献   

13.
The DNA repair proteins XRCC1 and DNA ligase III are physically associated in human cells and directly interact in vitro and in vivo. Here, we demonstrate that XRCC1 is additionally associated with DNA polymerase-beta in human cells and that these polypeptides also directly interact. We also present data suggesting that poly (ADP-ribose) polymerase can interact with XRCC1. Finally, we demonstrate that DNA ligase III shares with poly (ADP-ribose) polymerase the novel function of a molecular DNA nick-sensor, and that the DNA ligase can inhibit activity of the latter polypeptide in vitro. Taken together, these data suggest that the activity of the four polypeptides described above may be co-ordinated in human cells within a single multiprotein complex.  相似文献   

14.
DNA single-strand breaks (SSBs) are the most frequent lesions caused by oxidative DNA damage. They disrupt DNA replication, give rise to double-strand breaks and lead to cell death and genomic instability. It has been shown that the XRCC1 protein plays a key role in SSBs repair. We have recently shown in living human cells that XRCC1 accumulates at SSBs in a fully poly(ADP-ribose) (PAR) synthesis-dependent manner and that the accumulation of XRCC1 at SSBs is essential for further repair processes. Here, we show that XRCC1 and its partner protein, DNA ligase IIIα, localize at the centrosomes and their vicinity in metaphase cells and disappear during anaphase. Although the function of these proteins in centrosomes during metaphase is unknown, this centrosomal localization is PAR-dependent, because neither of the proteins is observed in the centrosomes in the presence of PAR polymerase inhibitors. On treatment of metaphase cells with H2O2, XRCC1 and DNA ligase IIIα translocate immediately from the centrosomes to mitotic chromosomes. These results show for the first time that the repair of SSBs is present in the early mitotic chromosomes and that there is a dynamic response of XRCC1 and DNA ligase IIIα to SSBs, in which these proteins are recruited from the centrosomes, where metaphase-dependent activation of PAR polymerase occurs, to mitotic chromosomes, by SSBs-dependent activation of PAR polymerase.  相似文献   

15.
Uracil-DNA glycosylase, UNG2, interacts with PCNA and initiates post-replicative base excision repair (BER) of uracil in DNA. The DNA repair protein XRCC1 also co-localizes and physically interacts with PCNA. However, little is known about whether UNG2 and XRCC1 directly interact and participate in a same complex for repair of uracil in replication foci. Here, we examine localization pattern of these proteins in live and fixed cells and show that UNG2 and XRCC1 are likely in a common complex in replication foci. Using pull-down experiments we demonstrate that UNG2 directly interacts with the nuclear localization signal-region (NLS) of XRCC1. Western blot and functional analysis of immunoprecipitates from whole cell extracts prepared from S-phase enriched cells demonstrate the presence of XRCC1 complexes that contain UNG2 in addition to separate XRCC1 and UNG2 associated complexes with distinct repair features. XRCC1 complexes performed complete repair of uracil with higher efficacy than UNG2 complexes. Based on these results, we propose a model for a functional role of XRCC1 in replication associated BER of uracil.  相似文献   

16.
XR-1 is a CHO mutant cell line defective in double strand break repair and V(D)J recombination. These defects are due to a deletion of the XRCC4 gene which encodes a 38-kDa nuclear phosphoprotein. Recent studies have shown that XRCC4 interacts with and enhances the activity of DNA ligase IV in vitro. In this study we investigate the effect of the absence of XRCC4 on the level of DNA ligase IV in XR-1 cells. Western blot analysis indicates that levels of DNA ligase IV protein are almost undetectable in these cells, however, introduction of the XRCC4 cDNA into XR-1 resulted in a return to wild type levels of the protein. Furthermore, analysis of DNA ligase IV mRNA showed equivalent levels in both XR-1 and XRCC4 transfected XR-1 indicating that the altered level of DNA ligase IV is not due to a change in the expression of the gene. These data strongly suggest that an important function of XRCC4 is to stabilize the DNA ligase IV protein.  相似文献   

17.
Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.  相似文献   

18.
Guan L  Bebenek K  Kunkel TA  Greenberg MM 《Biochemistry》2010,49(45):9904-9910
5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is an oxidized abasic lesion that is produced by a variety of DNA damaging agents, including several antitumor antibiotics. DOB efficiently and irreversibly inhibits DNA polymerase β, an essential base excision repair enzyme in mammalian cells. The generality of this mode of inhibition by DOB is supported by the inactivation of DNA polymerase λ, which may serve as a possible backup for DNA polymerase β during abasic site repair. Protein digests suggest that Lys72 and Lys84, which are present in the lyase active site of DNA polymerase β, are modified by DOB. Monoaldehyde analogues of DOB substantiate the importance of the 1,4-dicarbonyl component of DOB for efficient inactivation of Pol β and the contribution of a freely diffusible electrophile liberated from the inhibitor by the enzyme. Inhibition of DNA polymerase β's lyase function is accompanied by inactivation of its DNA polymerase activity as well, which prevents long patch base excision repair of DOB. Overall, DOB is highly refractory to short patch and long patch base excision repair. Its recalcitrance to succumb to repair suggests that DOB is a significant source of the cytotoxicity of DNA damaging agents that produce it.  相似文献   

19.
The XRCC4 protein is of critical importance for the repair of broken chromosomal DNA by non-homologous end joining (NHEJ). The absence of XRCC4 abolishes chromosomal NHEJ almost completely. One reason for this severe phenotype is that XRCC4 binds and modulates the stability and activity of the NHEJ-specific ligase, DNA ligase IV. XRCC4 in solution is in equilibrium between the dimeric and tetrameric forms. Previous structural studies have shown that the interface between dimers is located in the same region as that implicated in DNA ligase IV interaction. With the use of equilibrium sedimentation analysis, we show here that only the XRCC4 dimer can associate with DNA ligase IV, forming a monodisperse complex of 2:1 stoichiometry in solution. In addition, physical analysis of XRCC4/DNA ligase IV complex formation, combined with mutational analysis of XRCC4, indicates that tetramerization and DNA ligase IV binding are mutually exclusive. We propose that the putative function of the XRCC4 tetramer is distinct from its DNA ligase IV-associated function.  相似文献   

20.
The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. In contrast, overexpression of wild-type DNA ligase III had no effect on mitochondrial DNA copy number or integrity. Experiments revealed that wild-type DNA ligase III facilitates the interaction of DNA polymerase gamma with a nicked DNA substrate in vitro, and that the zinc finger domain of DNA ligase III is required for this activity. Mitochondrial protein extracts prepared from cells overexpressing a DNA ligase III protein that lacked the zinc finger domain had reduced base excision repair activity compared with extracts from cells overexpressing the wild-type protein. These data support the interpretation that the interaction of DNA ligase III and DNA polymerase gamma is required for proper maintenance of the mammalian mitochondrial genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号