首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low-frequency (1-10 Hz) electrical stimulation of nonspecific n. centralis lateralis and n. centrum medianum and specific thalamic (LGB) nuclei on spatial synchronization of biopotentials of neocortical areas and on the process of learning was studied on rabbits. Electrical stimulation of the non-specific nuclei raised the level of correlation of the cortical potentials, while the LGB stimulation, on the contrary, weakened the spatial synchronization between the potentials of the visual and sensorimotor neocortical areas. On the basis of the obtained data a conclusion is made that stimulation of the non-specific thalamus contributes to a more successful formation of defensive conditioned reflex to light unlike LGB stimulation. It is suggested that a certain specificity of the studied subcortical formations in organization of spatial synchronization of the brain biopotentials and in the process of learning is due to morpho-functional peculiarities of these structures.  相似文献   

2.
Spatial synchronization of cortical biopotentials was studied at different levels of the functioning of short-term verbal memory. In the phases prior to and during presentation of information the general level of distant synchronization in the cortex at a high functional state of the mnemical mechanism is higher than at a low state. In the phases following presentation and during reproduction, the relations are reverse. The enhancement of distant synchronization involves primarily the posterior parts of the right hemisphere, while the decrease comprises all the cortical areas, with some predominance of this effect in the anterior areas.  相似文献   

3.
We report the effects exerted by the cortex upon the intralaminar thalamic nucleic, as revealed by reversible blockade of the cortex with spreading depression in awake rats. Extracellular recordings of spontaneous activity were made simultaneously at thalamic and cortical sites. The effect of peripheral receptive field stimulation was to decrease activity of intralaminar thalamic cells. Cortical recordings revealed the cortical regions affected by spreading depression. Two type of cells were identified depending on the changes in their sensorial responses during the cortical spreading depression propagation. The first exhibited a tonic facilitating cortical control when the cortical spreading depression was located at A 8.0 to A 10.0. The second type exhibited a disappearance of the sensorial responses when cortical spreading depression was located at A 4.0 to A 8.0 and also displayed the tonic facilitating control. This indicates that two different identified cortical regions influenced the thalamic activity.  相似文献   

4.
The self-sustained after-discharges (SSADs) characterised by the EEG pattern of serrated waves (SerW) were induced by rhythmic low frequency electrical stimulation of thalamic nuclei and the hippocampus of Wistar albino male rats in acute experiments. We used spreading depression to eliminate functionally the cortex and the hippocampus. Suction ablation of the cortical somatosensory projection area was also used to test its involvement in the SerW SSAD induction. The hippocampal spreading depression but not the cortical one abolished the SerW SSAD induced by the stimulation of the thalamic nuclei. The animals with the suction ablation of the somatosensory projection area also produced SerW SSADs when the stimulation electrodes were placed in the thalamic ventrobasal complex (in intact animals this stimulation induces spike-and-wave SSADs but not SerW-SSAD). The crucial importance of the hippocampus in the SerW SSAD generation and its possible use as a model of partial seizures with complex symptomatology is discussed.  相似文献   

5.
Thalamic neurons receive inputs from cortex and their responses are modulated by the basal ganglia (BG). This modulation is necessary to properly relay cortical inputs back to cortex and downstream to the brain stem when movements are planned. In Parkinson's disease (PD), the BG input to thalamus becomes pathological and relay of motor-related cortical inputs is compromised, thereby impairing movements. However, high frequency (HF) deep brain stimulation (DBS) may be used to restore relay reliability, thereby restoring movements in PD patients. Although therapeutic, HF stimulation consumes significant power forcing surgical battery replacements, and may cause adverse side effects. Here, we used a biophysical-based model of the BG-Thalamus motor loop in both healthy and PD conditions to assess whether low frequency stimulation can suppress pathological activity in PD and enable the thalamus to reliably relay movement-related cortical inputs. We administered periodic pulse train DBS waveforms to the sub-thalamic nucleus (STN) with frequencies ranging from 0-140 Hz, and computed statistics that quantified pathological bursting, oscillations, and synchronization in the BG as well as thalamic relay of cortical inputs. We found that none of the frequencies suppressed all pathological activity in BG, though the HF waveforms recovered thalamic reliability. Our rigorous study, however, led us to a novel DBS strategy involving low frequency multi-input phase-shifted DBS, which successfully suppressed pathological symptoms in all BG nuclei and enabled reliable thalamic relay. The neural restoration remained robust to changes in the model parameters characterizing early to late PD stages.  相似文献   

6.
Cats were immobilized with D-tubocurarine. Responses of 231 neurons of the thalamic nucleus lateralis posterior to cortical stimulation in areas 5b and 21 of the suprasylvian gyrus were studied. Responses of 34 neurons were antidromic, indicating the existence of a direct projection of this nucleus to the cortical areas studied. This projection was most extensive in area 5b. The long latencies (up to 60 msec) of the antidromic responses of some neurons indicate that axons of certain neurons of thalamic nucleus lateralis posterior conduct excitation very slowly (0.3 m/sec). Orthodromic responses with latencies of 2–3 msec to cortical stimulation point to the presence of direct pathways from cortex to nucleus. The flow of afferent impulses into the nucleus from area 5b is stronger than from area 21. Convergence of impulses from these areas was observed on 44% of neurons of the nucleus. Cortical stimulation of areas 5b and 21 evoked postsynaptic inhibition in most neurons of the nucleus. It is concluded that two-way direct connections exist between nucleus lateralis posterior of the thalamus and the suprasylvian cortex.  相似文献   

7.
Characteristics of spatial-temporal organization of brain biopotentials were examined in one to 2.5 year old children during recognition of visual images. Crosscorrelation EEG analysis of frontal, motor, inferior parietal, temporal and occipital cortical zones has shown that recognition of familiar visual objects is accompanied by an increase in spatial synchronization of biopotentials, especially in the inferior parietal zones of both hemispheres and occipital centres of the left hemisphere. There is a considerable increase in the number of highly synchronous synphasic oscillations at the 4--5 per sec frequency with an intensified periodicity of processes. Recognition of unfamiliar objects does not produce a similar effect. Temporal organization of biopotentials of the associative (frontal and inferior parietal) and projection visual areas in the course of recognition of images depends on the existence of a notion of the whole object in the child's memory.  相似文献   

8.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted.

The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition—test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

9.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted. The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition-test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

10.
Here we investigate the functional organization of structures involved in sensory analysis in a restricted region of a cortical projection area. We have shown that stimulation of somatosensory areas I and II (SI and SII) may block an afferent volley at the level of the thalamic relay nucleus, and that SII may be selectively blocked by stimulation of SI. Also definite somatosensory connections have been demonstrated between SII, SI, and the motor cortex. We suggest that common mechanisms underlie the generation of focal reactions in projection areas of the cortex induced by stimulation of various structures. The properties of two groups of neurones from area SII are described: those having a short latency and receiving direct projections from the thalamic relay nucleus, and those of long latent period with a well-marked convergence, and reacting to stimulation of various afferent pathways. It is suggested that each path to a local point of a cortical projection areas terminates with its relay element. The signal is then directed to a common intracortical system of neurones where signals from various sources occurs (afferent, interhemispherical, subcortico-cortical, and intracortical) converge and interact. All groups of neurones are involved in the formation of the common components of evoked potentials.Presented to the All-Union Symposium: "Electrical responses of the cerebral cortex to afferent stimuli," Kiev, October, 1969.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 155–165, March–April, 1970.  相似文献   

11.
Neuronal responses of the rat somatosensory cortex grafted into damaged host barrel field to electrical stimulation of the host brain were investigated extracellularly in rats under light pentobarbital anaesthesia. The following structures of the host brain were stimulated: ventrobasal complex and posterior thalamic nuclei, ipsilateral area of vibrissae representation in the sensorimotor cortex and contralateral barrel field. Reactivity of the grafted neurones was lower, than in the intact barrel field, but the mean latencies of responses were not significantly different. Stimulation of the thalamic nuclei was more effective than that of the cortical areas both in grafted and intact barrel fields. Posttetanic depression after repetitive stimulation was often observed in the grafts, while posttetanic potentiation was more usual for the intact barrel field. The data show the sources of some functional afferent inputs to the grafts which may be responsible for neuronal reactions to somatosensory stimulation of the host animal.  相似文献   

12.
A study was carried out on 8 adult cats of functional role of the frontal, parietal and occipital parts of the neocortex, and also of the dorsal hippocampus, mediodorsal thalamic nucleus and caudate nucleus head, in realization of a delayed spatial choice (DSCh) before and after compensatory reorganizations of the brain activity caused by multiple electrical stimulation of the frontal part of the cerebral cortex. Compensatory reorganization led to a change of functional significance of these structures. While before this change the frontal cortex, hippocampus and mediodorsal thalamic nucleus were critically necessary brain areas for the realization of the DSCh, after it parietal and occipital cortical areas acquired such significance. The obtained data are discussed proceeding from the principle of the integrity in the brain activity.  相似文献   

13.
In 3 dogs with implanted electrodes, in conditioned experiments correlation of the bioelectrical processes was studied by coherence function calculation of the hippocampus, hypothalamus, amygdala and frontal cortex biopotentials. It was shown, that the level of maximum values of coherence function of bioelectrical oscillations, led from various pairs of the studied brain structures significantly differed both in magnitude and frequency at which the greatest synchronization of biopotentials was noticed. In one dog with a high degree of connection between the hippocampus and hypothalamus biopotentials oscillations, a low synchronization of the frontal cortex and amygdala oscillations was found; in two other animals with a higher level of coherence between the oscillations of the frontal cortex and amygdala biopotentials, a lower degree of connection between the oscillations led from the hippocampus and hypothalamus was revealed. Synchronization of the biopotentials of the hippocampus and frontal cortex and also of the hippocampus and amygdala biopotentials proved to be low in all experimental dogs, what additionally testifies to different role of these structures in organization of the behaviour.  相似文献   

14.
An EEG cross-correlation analysis has shown that in children aged four to five years higher sensory analysis of verbal commands and their meaning was reflected in the nature of synchronous interactions between oscillatory processes and their spatial-temporal patterns. At the moment of perception of the command "listen" highly synchronous synphasic relations were recorded between biopotentials in the associative infero-parietal cortex and projection temporal centres of the left hemisphere. Oscillations of the parietal areas preceded the rhythms of the occipital, motor and frontal lobes in the left hemisphere; slow oscillations with a 3 osc/sec frequency predominated, and the intensity of the periodic processes increased. The command "look" evoked a high degree of synchronous synphasic relations of biopotentials in the parietal-occipital cortical parts of both hemispheres; oscillations with 6 osc/sec frequency predominated; their intensity rose; synphasic relations of oscillations in parietal and motor and temporal centres grew more manifest, while the rhythmic activity in the parietal zones preceded the potentials in the frontal lobes of both hemispheres.  相似文献   

15.
Summate electrical activity of the rabbit neocortex during formation of drinking excitation was studied by means of mathematical analysis. It is shown that the change of the electrical activity depends on the level of drinking excitability created by various duration of water deprivation (24-48 h) and is expressed in a generalized lowering of potentials amplitude without frequency change. Spectro-correlative EEG analysis showed that lowering of spectrum power took place within the whole analyzed frequencies range. Besides, an increase took place of interconnections of the cortical electrical processes, estimated by coherence function. It may by suggested that the manifested reconstruction of spectro-correlative characteristics of the neocortical biopotentials reflects a formation of motivational excitation establishing optimal level of cortex functioning.  相似文献   

16.
Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states – mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs.  相似文献   

17.
The establishment of connectivity between specific thalamic nuclei and cortical areas involves a dynamic interplay between the guidance of thalamocortical axons and the elaboration of cortical areas in response to appropriate innervation. We show here that Sema6A mutants provide a unique model to test current ideas on the interactions between subcortical and cortical guidance mechanisms and cortical regionalization. In these mutants, axons from the dorsal lateral geniculate nucleus (dLGN) are misrouted in the ventral telencephalon. This leads to invasion of presumptive visual cortex by somatosensory thalamic axons at embryonic stages. Remarkably, the misrouted dLGN axons are able to find their way to the visual cortex via alternate routes at postnatal stages and reestablish a normal pattern of thalamocortical connectivity. These findings emphasize the importance and specificity of cortical cues in establishing thalamocortical connectivity and the spectacular capacity of the early postnatal cortex for remapping initial sensory representations.  相似文献   

18.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

19.
Chen Y  Magnani D  Theil T  Pratt T  Price DJ 《PloS one》2012,7(3):e33105
Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors.  相似文献   

20.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号