首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周大文  管翌华  许淼  颜景斌  黄英  张敬之  任兆瑞 《遗传》2008,30(12):1629-1634
摘要: 为了探讨MLPA-微阵列技术用于检测性染色体异常的可行性和精确性, 针对Y染色体上的3个基因TSPY(p11.2)、PRY(q11)和RBMY(q11.2)设计MLPA探针, 应用MLPA-微阵列技术对15例已知染色体核型的样品进行检测, 将检测结果与各样品核型分析和PCR的检测结果进行对照和比较。结果表明, MLPA-微阵列技术对上述各基因位点的检测结果与样品染色体核型基本吻合, 特别是对二例核型分析没有获得染色体结构异常信息的样品, MLPA-微阵列技术检测出Y染色体微小的缺失或指示某些未知染色体片段的信息, 并与PCR检测结果完全相符。表明文章报道的MLPA-微阵列技术能够检测核型分析无法分辨的微小变化和异常, 显示MLPA-微阵列技术在染色体异常分析中具有很高的检测效率和准确性, 相对于染色体核型分析具有明显的优势, 在临床染色体病诊断中具有较大的应用前景。  相似文献   

2.
Sex chromosome aberrations are known to cause congenital abnormalities and unexplained infertility in horses. Most of these anomalies remain undiagnosed because of the complexity of the horse karyotype and the lack of specialized laboratories that can perform such diagnoses. On the other hand, the utilization of microsatellite markers is a technique widely spread in horse breeding, mostly because of their usage in parentage tests. We studied the usage of a novel combination of diagnostic approaches in the evaluation of a very uncommon case of chromosomal abnormalities in a Spanish purebred colt, primarily detected using a commercial panel of short tandem repeat (STR) makers. Based on these results, we performed a full cytogenetic analysis using conventional and fluorescent in situ hybridization techniques with individual Equus caballus chromosome X and Equus caballus chromosome Y painting probes. We also tested the presence of two genes associated with the sexual development in horses and an extra novel panel of eight microsatellite markers specifically located in the sex chromosome pair. This is the first case report of a leukocyte chimerism between chromosomally normal (64,XY) and abnormal (63,X0) cell lines in horses. Our results indicate that the use of the short tandem repeat markers as a screening technique and as a confirmation utilizing cytogenetic techniques can be used as a very interesting, easy, and nonexpensive diagnostic approach to detect chromosomal abnormalities in the domestic horse.  相似文献   

3.
A fluorescence in situ hybridization (FISH) procedure was used to detect chromosome abnormalities in archival abortion material. Nuclei were isolated from 50-m-thick tissue blocks from 18 selected and karyotyped abortions. Five probes for repetitive centromeric sequences of chromosomes 1, 16, 18, X and Y were used. For each chromosome, at least 200 nuclei were scored blindly, i.e. without knowledge of the karyotype. The FISH results obtained were compatible with the cytogenetic data in 14 cases. There were four discrepancies. Two of these were observed for cases karyotyped as trisomy 16. Furthermore, FISH results showed trisomy 18 in two cases having normal chromosomes 18 and 18q+, respectively. The latter case was not discrepant if the structural rearrangement involved chromosome 18 material. The remaining discrepancies could be explained by chromosomal mosaicism. Admixture of normal maternal cells was also noted. It is concluded that FISH can be used to study retrospectively the presence of chromosome abnormalities in abortion material. However, the quality obtained after the use of fresh material is superior.  相似文献   

4.
Cytogenetic abnormalities are important diagnostic and prognostic criteria for hematologic malignancies. Karyotyping and fluorescence in situ hybridization (FISH) are the conventional methods by which these abnormalities are detected. The sensitivity of these microscopy-based methods is limited by the abundance of the abnormal cells in the samples and therefore these analyses are commonly not applicable to minimal residual disease (MRD) stages. A flow cytometry-based imaging approach was developed to detect chromosomal abnormalities following FISH in suspension (FISH-IS), which enables the automated analysis of several log-magnitude higher number of cells compared with the microscopy-based approaches. This study demonstrates the applicability of FISH-IS for detecting numerical chromosome aberrations, establishes accuracy, and sensitivity of detection compared with conventional FISH, and feasibility to study procured clinical samples of acute myeloid leukemia (AML). Male and female healthy donor peripheral blood mononuclear cells hybridized with combinations of chromosome enumeration probes (CEP) 8, X, and Y served as models for disomy, monosomy, and trisomy. The sensitivity of detection of monosomies and trisomies amongst 20,000 analyzed cells was determined to be 1% with a high level of precision. A high correlation (R(2) = 0.99) with conventional FISH analysis was found based on the parallel analysis of diagnostic samples procured from 10 AML patients with trisomy 8 (+8). Additionally, FISH-IS analysis of samples procured at the time of clinical remission demonstrated the presence of residual +8 cells indicating that this approach may be used to detect MRD and associated chromosomal defects. ? 2012 International Society for Advancement of Cytometry.  相似文献   

5.
Besides their use in mRNA expression profiling, oligonucleotide microarrays have also been applied to single-nucleotide polymorphism (SNP) and loss of heterozygosity (LOH) or allelic imbalance studies. In this report, we evaluate the reliability of using whole genome amplified DNA for analysis with an oligonucleotide microarray containing 11 560 SNPs to detect allelic imbalance and chromosomal copy number abnormalities. Whole genome SNP analyses were performed with DNA extracted from osteosarcoma tissues and patient-matched blood. SNP calls were then generated by Affymetrix® GeneChip® DNA Analysis Software. In two osteosarcoma cases, using unamplified DNA, we identified 793 and 1070 SNP loci with allelic imbalance, respectively. In a parallel experiment with amplified DNA, 78% and 83% of these SNP loci with allelic imbalance was detected. The average false-positive rate is 13.8%. Furthermore, using the Affymetrix® GeneChip® Chromosome Copy Number Tool to analyze the SNP array data, we were able to detect identical chromosomal regions with gain or loss in both amplified and unamplified DNA at cytoband resolution.  相似文献   

6.
Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental expressed mRNA in maternal plasma. We achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma. PLAC4 mRNA in maternal plasma was fetal derived and cleared after delivery. The allelic ratios in maternal plasma correlated with those in the placenta. Fetal trisomy 21 was detected noninvasively in 90% of cases and excluded in 96.5% of controls.  相似文献   

7.
We report a case having multiple abnormalities including the simultaneous presence of the heart defect and central nerve system abnormalities, which has been reported in a few cases, and with a partial trisomy 15q. Partial trisomy 15q has been inherited from a balanced translocation carried by his phenotypically normal father, detected by traditional banding and fluorescence in situ hybridization (FISH). Application of FISH using whole chromosome specific library probes, locus specific and repetitive probes allowed us to detect the translocation between chromosomes 15q and 17q. Simultaneous application of probes revealed the position of the translocation. Interestingly, in addition to the chromosomes 15 pericentromeric signals, the use of chromosome 15 beta-satellite III probe demonstrated an extra signal on chromosome 14 in both metaphase, and lighted three signals interphase nuclei which was inherited from his father. This patient is compared with other partial trisomy 15q patients reported in the literature. The results are also discussed in relation to genetic counselling for the possible relation of chromosome abnormality and clinical findings.  相似文献   

8.
Trisomy 18 is usually a lethal chromosomal abnormality and is the second most common autosomal trisomy in humans, with an incidence of 1:8000 live births. It is commonly associated with abnormalities of the lower and upper extremities, having the frequency of 95% and 65%, respectively. A newborn female olive baboon (Papio hamadryas anubis) was diagnosed with intrauterine growth retardation and severe arthrogryposis-like congenital joint deformities. Cytogenetic analysis including G-banding and fluorescence in situ hybridization (FISH) revealed that the congenital abnormalities were associated with chromosomal mosaicism for trisomy 18. Genetic analysis with microsatellites from chromosome 18 confirmed the maternal origin of the extra chromosome 18. This is the first report of trisomy 18 in the baboon, which may be a promising animal model of human disease.  相似文献   

9.
A miscarriage is the most frequent complication of a pregnancy. Poor chromosome preparations, culture failure, or maternal cell contamination may hamper conventional karyotyping. Techniques such as chromosomal comparative genomic hybridization (chromosomal‐CGH), array-comparative genomic hybridization (array-CGH), fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and quantitative fluorescent polymerase chain reaction (QF-PCR) enable us to trace submicroscopic abnormalities. We found the prevalence of chromosome abnormalities in women facing a single sporadic miscarriage to be 45% (95% CI: 38–52; 13 studies, 7012 samples). The prevalence of chromosome abnormalities in women experiencing a subsequent miscarriage after preceding recurrent miscarriage proved to be comparable: 39% (95% CI: 29–50; 6 studies 1359 samples). More chromosome abnormalities are detected by conventional karyotyping compared to FISH or MLPA only (chromosome region specific techniques), and the same amount of abnormalities compared to QF-PCR (chromosome region specific techniques) and chromosomal‐CGH and array-CGH (whole genome techniques) only. Molecular techniques could play a role as an additional technique when culture failure or maternal contamination occurs: recent studies show that by using array-CGH, an additional 5% of submicroscopic chromosome variants can be detected. Because of the small sample size as well as the unknown clinical relevance of these molecular aberrations, more and larger studies should be performed of submicroscopic chromosome abnormalities among sporadic miscarriage samples. For recurrent miscarriage samples molecular technique studies are relatively new. It has often been suggested that miscarriages are due to chromosomal abnormalities in more than 50%, but the present review has determined that chromosomal and submicroscopic genetic abnormalities on average are prevalent in maximally half of the miscarriage samples. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

10.
Pallister-Killian syndrome (PKS) is a rare sporadic genetic disorder usually caused by mosaicism of an extra isochromosome of 12p (i(12p)). This retrospective study analysed the prenatal ultrasound manifestations and molecular and cytogenetic results of five PKS foetuses. Samples of amniotic fluid and/or cord blood, skin biopsy and placenta were collected. Conventional karyotyping and single nucleotide polymorphism array (SNP array) were performed on all the amniotic fluid or cord blood samples. Copy number variants sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were also used for the validation for one foetus. All the five foetuses were from pregnancies with advanced parental age. Two foetuses involved structural abnormalities and one foetus had only soft markers, all of which included increased nuchal translucency. The rest two foetuses had normal ultrasounds in the second trimester, which has rarely been reported before. The karyotype revealed typical i(12p) in four cases and a small supernumerary marker chromosome consisting of 12p and 20p in the remaining one case. The proportion of cells with i(12p) ranged from 0 to 100% in cultural cells, while SNP array results suggested 2−4 copies of 12p. For one foetus, metaphase FISH showed normal results, but the interphase FISH suggested cell lines with two, three and four copies of 12p in the amniotic fluid. Advanced parental age may be an important risk factor for PKS, and there were no typical ultrasound manifestations related to PKS. A combination of karyotype analysis and molecular diagnosis is an effective method for the diagnosis of PKS.  相似文献   

11.
Haase B  Jude R  Brooks SA  Leeb T 《Animal genetics》2008,39(3):306-309
The tobiano white-spotting pattern is one of several known depigmentation phenotypes in horses and is desired by many horse breeders and owners. The tobiano spotting phenotype is inherited as an autosomal dominant trait. Horses that are heterozygous or homozygous for the tobiano allele ( To ) are phenotypically indistinguishable. A SNP associated with To had previously been identified in intron 13 of the equine KIT gene and was used for an indirect gene test. The test was useful in several horse breeds. However, genotyping this sequence variant in the Lewitzer horse breed revealed that 14% of horses with the tobiano pattern did not show the polymorphism in intron 13 and consequently the test was not useful to identify putative homozygotes for To within this breed. Speculations were raised that an independent mutation might cause the tobiano spotting pattern in this breed. Recently, the putative causative mutation for To was described as a large chromosomal inversion on equine chromosome 3. One of the inversion breakpoints is approximately 70 kb downstream of the KIT gene and probably disrupts a regulatory element of the KIT gene. We obtained genotypes for the intron 13 SNP and the chromosomal inversion for 204 tobiano spotted horses and 24 control animals of several breeds. The genotyping data confirmed that the chromosomal inversion was perfectly associated with the To allele in all investigated horses. Therefore, the new test is suitable to discriminate heterozygous To/+ and homozygous To/To horses in the investigated breeds.  相似文献   

12.
Chromosomal abnormalities in the sex chromosome pair (ECAX and ECAY) are widely associated with reproductive problems in horses. However, a large proportion of these abnormalities remains undiagnosed due to the lack of an affordable diagnostic tool that allows for avoiding karyotyping tests. Hereby, we developed an STR (single‐tandem‐repeat)‐based molecular method to determine the presence of the main sex chromosomal abnormalities in horses in a fast, cheap and reliable way. The frequency of five ECAX‐linked (LEX026, LEX003, TKY38, TKY270 and UCDEQ502) and two ECAY‐linked (EcaYH12 and SRY) markers was characterized in 261 Purebred Spanish Horses to determine the efficiency of the methodology developed to be used as a chromosomal diagnostic tool. All the microsatellites analyzed were highly polymorphic, with a sizeable number of alleles (polymorphic information content > 0.5). Based on this variability, the methodology showed 100% sensitivity and 99.82% specificity to detect the most important sex chromosomal abnormalities reported in horses (chimerism, Turner's syndrome and sex reversal syndromes). The method was also validated with 100% efficiency in 10 individuals previously diagnosed as chromosomally aberrant. This STR screening panel is an efficient and reliable molecular–cytogenetic tool for the early detection of sex chromosomal abnormalities in equines that could be included in breeding programs to save money, effort and time of veterinary practitioners and breeders.  相似文献   

13.
De novo chromosome structural abnormalities cannot always be diagnosed by the use of standard cytogenetic techniques. We applied a previously developed chromosome-band-specific painting method to the diagnosis of such rearrangements. The diagnostic procedures consisted of microdissection of an aberrant chromosomal region of a given patient, polymerase chain reaction (PCR) amplification of the dissected chromosomal DNA, and subsequent competitive fluorescence in situ hybridization (FISH) using the PCR products as a probe pool on metaphase chromosomes from the patient and/or a karyotypically normal person. With this strategy, we studied 6 de novo rearrangements (6p+, 6q+, 9p+, 17p+, +mar, and +mar) in 6 patients. These rearrangements had been seen by conventional banding but their origin could not be identified. In all 6 patients, we successfully ascertained the origin. Using an aberrant region-specific probe pool, FISH signals appeared on both the aberrant region and a region of another specific chromosome pair. A reverse probe pool that was generated through the microdissection of normal chromosomes at a candidate region for the origin of the aberration hybridized with both the aberrant and the candidate regions. We thus diagnosed one patient with 17p+ as having trisomy for 14q32-qter, one with 9p+ as having trisomy for 12pter-p12, one with 6q+ as having a tandem duplication (trisomy) of a 6q23-q25 segment, one with 6p+ as having a tandem duplication (trisomy) of a 6p23-q21.3 segment, one with a supernumerary metacentric marker chromosome as having tetrasomy for 18pter-cen, and the last with an additional small marker chromosome as having trisomy for 18p11.1 (or p11.2)-q11.2. The present targeted chromosome-band-painting method provides the simple and rapid preparation of a probe pool for region-specific FISH, and is useful for the diagnosis of chromosome abnormalities of unknown origin.  相似文献   

14.
Cytogenetic analyses of horses have benefited the horse industry by identifying chromosomal aberrations causing congenital abnormalities, embryonic loss and infertility. Technical advances in cytogenetics enabled the identification of chromosome specific aberrations. More recently, advances in genomic tools have been used to more precisely define chromosome abnormalities. In this report we review the history of equine clinical cytogenetics, identify historical landmarks for equine clinical cytogenetics, discuss how the current use of genomic tools has benefited this area, and how future genomics tools may enhance clinical cytogenetic studies in the horse.  相似文献   

15.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

16.
Chromosomal abnormalities are a major cause of mental retardation and/or multiple congenital anomalies (MCA/MR). Screening for these chromosomal imbalances has mainly been done by standard karyotyping. The objective of this study was to report standard chromosome analysis and FISH screening of a series of 24 patients with MCA/MR. Structural chromosomal abnormalities were detected in 24 alterations and included 5 deletions, 2 duplications, 6 unbalanced translocations, 3 inversions, 2 insertions, 3 derivative chromosomes, 2 marker chromosomes and 1 isochromosome. We confirm that a high percentage of MCA/MR cases hitherto considered idiopathic is caused by chromosomal imbalances. We conclude that patients with MCA/MR should be routinely karyotyped.  相似文献   

17.
The methods of molecular cytogenetics, in particular fluorescence in situ hybridization (FISH), are widely applied in cytogenetics for identification of numerical and structural chromosomal abnormalities, which are difficult to detect by routine cytogenetic techniques. Due to many advantages, FISH is used in research (gene mapping, gene expression studies, interspecies chromosome homology), and clinical diagnostics (chromosomal aberrations analysis in pre- and postnatal diagnostics, oncology). The techniques of in situ hybridization (ISH) are often employed in addition to classical banding techniques, in case where banding pattern is not reliable. This paper focuses on particular clinical examples, where FISH was successfully used to identify structural and numerical chromosomal aberrations.  相似文献   

18.
De novo structural chromosomal imbalances represent a major challenge in modern cytogenetic diagnostics. Based solely on conventional cytogenetic techniques it may be impossible to identify the chromosomal origin of additional chromosomal material. In these cases molecular cytogenetic investigations including multicolor-FISH (M-FISH), spectral karyotyping (SKY), multicolor banding (MCB) and cenM-FISH combined with appropriate single-locus FISH probes are highly suitable for the determination of the chromosomal origin and fine characterization of derivative chromosomes. Here we report on four patients with de novo chromosomal imbalances and distinct chromosomal phenotypes, three of them harboring pure partial trisomies: a mildly affected boy with pure partial trisomy 10q22.2-->q22.3 approximately 23.1 due to an interstitial duplication, a girl with pure trisomy 12p11.21-->pter and atypically moderate phenotype as the consequence of an X;autosome translocation, and a girl with multiple congenital abnormalities and severe developmental delay and a 46,XX,15p+ karyotype hiding a trisomy 17pter-->17q11.1. The fourth patient is a girl with minor phenotypic features and mental retardation with an inverted duplication 18q10-->p11.31 combined with a terminal deletion of 18p32. The clinical pictures are compared with previously described patients with focus on long term outcome.  相似文献   

19.
Unbalanced whole-arm translocations (WATs) of the long arm of chromosome 1, resulting in complete trisomy 1q, are chromosomal abnormalities detectable in both solid tumors and hematologic neoplasms. Among the WATs of 1q to acrocentric chromosomes, a few patients with der(1;15) described as a dicentric chromosome have been reported so far, whereas cases of der(1;14) are much rarer. We report on a case of der(1;14) detected as single anomaly in a patient with myelodysplastic syndrome. The aim of our work was to investigate the breakpoints of the (1;14) translocation leading to the der(1;14). Fluorescence in situ hybridization (FISH) experiments have been performed on chromosome preparations from bone marrow aspirate, using specific centromeric probes of both chromosomes, as well as a probe mapping to 1q11 band. FISH results showed that in our patient the derivative chromosome was monocentric with a unique centromere derived from chromosome 14. The breakpoints of the translocation were located in the short arm of chromosome 14 and in the long arm of chromosome 1, between the alphoid D1Z5 and the satellite II domains. The 1q breakpoint was within the pericentromeric region of chromosome 1, which is notoriously an unstable chromosomal region, involved in different chromosomal rearrangements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号