首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
3.
4.
NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5(eGFP/w) hESCs facilitate quantification of cardiac differentiation, purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP(+) cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.  相似文献   

5.
6.
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 3 (FHL3) is a type of LIM-only protein that contains four tandemly repeated LIM motifs with an N-terminal single zinc finger (half LIM motif). FHL3 expresses predominantly in human skeletal muscle. In this report, FHL3 was shown to be a novel interacting partner of FHL2 using the yeast two-hybrid assay. Furthermore, site-directed mutagenesis of FHL3 indicated that the LIM2 of FHL3 is the essential LIM domain for interaction with FHL2. Green fluorescent protein (GFP) was used to tag FHL3 in order to study its distribution during myogenesis. Our result shows that FHL3 was localized in the focal adhesions and nucleus of the cells. FHL3 mainly stayed in the focal adhesion during myogenesis. Moreover, using site-directed mutagenesis, the LIM1 of FHL3 was identified as an essential LIM domain for its subcellular localization. Mutants of GFP have given rise to a novel technique, two-fusion fluorescence resonance energy transfer (FRET), in the determination of protein-protein interaction at particular subcellular locations of eukaryotic cells. To determine whether FHL2 and FHL3 can interact with one another and to locate the site of this interaction in a single intact mammalian cell, we fused FHL2 and FHL3 to different mutants of GFP and studied their interactions using FRET. BFP/GFP fusion constructs were cotransfected into muscle myoblast C2C12 to verify the colocalization and subcellular localization of FRET. We found that FHL2 and FHL3 were colocalized in the mitochondria of the C2C12 cells and FRET was observed by using an epi-fluorescent microscope equipped with an FRET specific filter set.  相似文献   

7.
Cellular adhesive events affect cell proliferation and differentiation decisions. How cell surface events mediating adhesion transduce signals to the nucleus is not well understood. After cell-cell or cell-substratum contact, cytosolic proteins are recruited to clustered adhesion receptor complexes. One such family of cytosolic proteins found at sites of cell adhesion is the Zyxin family of LIM proteins. Here we demonstrate that the family member Ajuba was recruited to the cell surface of embryonal cells, upon aggregate formation, at sites of cell-cell contact. Ajuba contained a functional nuclear export signal and shuttled into the nucleus. Importantly, accumulation of the LIM domains of Ajuba in the nucleus of P19 embryonal cells resulted in growth inhibition and spontaneous endodermal differentiation. The differentiating effect of Ajuba mapped to the third LIM domain, whereas regulation of proliferation mapped to the first and second LIM domains. Ajuba-induced endodermal differentiation of these cells correlated with the capacity to activate c-Jun kinase and required c-Jun kinase activation. These results suggest that the cytosolic LIM protein Ajuba may provide a new mechanism to transduce signals from sites of cell adhesion to the nucleus, regulating cell growth and differentiation decisions during early development.  相似文献   

8.
Using a yeast two-hybrid library screen, we have identified that the heart specific FHL2 protein, four-and-a-half LIM protein 2, interacted with human DNA-binding nuclear protein, hNP220. Domain studies by the yeast two-hybrid interaction assay revealed that the second LIM domain together with the third and the fourth LIM domains of FHL2 were responsible to the binding with hNP220. Using green fluorescent protein (GFP)-FHL2 and blue fluorescent protein (BFP)-hNP220 fusion proteins co-expressed in the same cell, we demonstrated a direct interaction between FHL2 and hNP220 in individual nucleus by two-fusion Fluorescence Resonance Energy Transfer (FRET) assay. Besides, Western blot analysis using affinity-purified anti-FHL2 antipeptide antibodies confirmed a 32-kDa protein of FHL2 in heart only. Virtually no expression of FHL2 protein was detected in brain, liver, lung, kidney, testis, skeletal muscle, and spleen. Moreover, the expression of FHL2 protein was also detectable in the human diseased heart tissues. Our results imply that FHL2 protein can shuttle between cytoplasm and nucleus and may act as a molecular adapter to form a multicomplex with hNP220 in the nucleus, thus we speculate that FHL2 may be particularly important for heart muscle differentiation and the maintenance of the heart phenotype.  相似文献   

9.
LIM domain-containing proteins contribute to cell fate determination, the regulation of cell proliferation and differentiation, and remodeling of the cell cytoskeleton. These proteins can be found in the cell nucleus, cytoplasm, or both. Whether and how cytoplasmic LIM proteins contribute to the cellular response to extracellular stimuli is an area of active investigation. We have identified and characterized a new LIM protein, Ajuba. Although predominantly a cytosolic protein, in contrast to other like proteins, it did not localize to sites of cellular adhesion to extracellular matrix or interact with the actin cytoskeleton. Removal of the pre-LIM domain of Ajuba, including a putative nuclear export signal, led to an accumulation of the LIM domains in the cell nucleus. The pre-LIM domain contains two putative proline-rich SH3 recognition motifs. Ajuba specifically associated with Grb2 in vitro and in vivo. The interaction between these proteins was mediated by either SH3 domain of Grb2 and the N-terminal proline-rich pre-LIM domain of Ajuba. In fibroblasts expressing Ajuba mitogen-activated protein kinase activity persisted despite serum starvation and upon serum stimulation generated levels fivefold higher than that seen in control cells. Finally, when Ajuba was expressed in fully developed Xenopus oocytes, it promoted meiotic maturation in a Grb2- and Ras-dependent manner.  相似文献   

10.
11.
Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.  相似文献   

12.
13.
Targeting of proteins to a particular cellular compartment is a critical determinant for proper functioning. LPP (LIM-containing lipoma-preferred partner) is a LIM domain protein that is localized at sites of cell adhesion and transiently in the nucleus. In various benign and malignant tumors, LPP is present in a mutant form, which permanently localizes the LIM domains in the nucleus. Here, we have investigated which regions in LPP target the protein to its subcellular locations. We found that the LIM domains are the main focal adhesion targeting elements and that the proline-rich region of LPP, which harbors binding sites for alpha-actinin and vasodilator-stimulated phosphoprotein (VASP), has a weak targeting capacity. All of the LIM domains of LPP cooperate in order to provide robust targeting to focal adhesions, and the linker between LIM domains 1 and 2 plays a pivotal role in this targeting. When overexpressed in the cytoplasm of cells, the LIM domains of LPP can deplete endogenous LPP and vinculin from focal adhesions. The proline-rich region of LPP contains targeting sites for focal adhesions and stress fibers that are distinct from the alpha-actinin and VASP binding sites, and the LPP LIM domains are dispensable for targeting LPP to the nucleus. Our studies have defined novel functional domains in the LPP protein.  相似文献   

14.
We have cloned and characterized a novel isoform of the skeletal muscle LIM protein 1 (SLIM1), designated SLIMMER. SLIM1 contains an N-terminal single zinc finger followed by four LIM domains. SLIMMER is identical to SLIM1 over the first three LIM domains but contains a novel C-terminal 96 amino acids with three potential bipartite nuclear localization signals, a putative nuclear export sequence, and 27 amino acids identical to the RBP-J binding region of KyoT2, a murine isoform of SLIM1. SLIM1 localized to the cytosol of Sol8 myoblasts and myotubes. SLIMMER was detected in the nucleus of myoblasts and, following differentiation into myotubes, was exclusively cytosolic. Recombinant green fluorescent protein-SLIM1 localized to the cytoplasm and associated with focal adhesions and actin filaments in COS-7 cells, while green fluorescent protein-SLIMMER was predominantly nuclear. SLIMMER truncation mutants revealed that the first nuclear localization signal mediates nuclear localization. The addition of the proposed nuclear export sequence decreased the level of exclusively nuclear expression and increased cytosolic SLIMMER expression in COS-7 cells. The leucine-rich nuclear export signal was required for the export of SLIMMER from the nucleus of myoblasts to the cytoplasm of myotubes. Collectively, these results suggest distinct roles for SLIM1 and SLIMMER in focal adhesions and nuclear-cytoplasmic communication.  相似文献   

15.
LIM domain proteins are important regulators of the growth, determination, and differentiation of cells. In this report, FHL3 (human four-and-a-half LIM-only protein 3) is shown to interact with human phosphatase CDC25B, a cell cycle regulator involved in the control of G2/M. We found that this interaction was specific to the CDC25B2 isoform. Deletion and point mutation studies indicated that the second LIM domain of FHL3 was essential for this interaction. FRET experiments in C2C12 cells showed that, although both proteins were colocated in the cytoplasm and the nucleus, they interacted only in the nucleus. Finally, we showed that FHL3 binding impaired neither CDC25B2 phosphatase activity nor its localization. Further work is now needed to elucidate the consequences of this interaction on myoblast fate decision and cycle control.  相似文献   

16.
FHL2通过相互作用抑制Id2的功能活性   总被引:1,自引:0,他引:1  
分化抑制蛋白2(Id2)通过抑制碱性螺旋-环-螺旋(bHLH)类转录因子的功能活性调控多种组织细胞的分化发育,并参与人类多种肿瘤的发生与进展.Id2相互作用蛋白可能调控其翻译后的功能活性.本研究以HLH结构域缺失的Id2作为诱饵蛋白,采用酵母双杂交方法对MCF-7 cDNA文库进行筛选,识别了1个新的Id2相互作用蛋白FHL2 (属于LIM蛋白家族的一员),哺乳动物双杂交实验系统验证了Id2与FHL2之间的相互作用,同时证实,该作用不依赖于Id2中的HLH结构域;GST-pulldown、免疫共沉淀方法,进一步证实FHL2/Id2之间的相互作用;免疫荧光共定位实验结果证实,FHL2/Id2相互作用主要发生在细胞核内;共转染实验结果发现,FHL2通过相互作用阻抑了Id2对bHLH类转录因子E47的功能抑制活性.总之,本研究识别了1个新的Id2相互作用蛋白FHL2,通过直接的相互作用,FHL2抑制了Id2的功能活性,FHL2可能参与调控Id2介导的细胞分化与发育过程,并可能参与肿瘤的发生与进展.  相似文献   

17.
Recently we reported a novel means of regulating LIM domain protein function. Paxillin LIM zinc-finger phosphorylation in response to cell adhesion regulates the subcellular localization of this cytoskeletal adaptor protein to focal adhesions, and also modulates cell adhesion to fibronectin (Brown et al. [1998] Mol. Biol. Cell 9:1803-1816). In the present study, we characterize further the protein kinases that phosphorylate paxillin LIM2 on threonine and LIM3 on serine. Analysis of the subcellular distribution of the LIM kinases demonstrated that the LIM3 protein kinase, but not the LIM2 kinase, resides within a detergent-insoluble fraction. The activities of the paxillin LIM domain kinases are differentially regulated during embryogenesis, and analysis of tissue distribution indicated a specificity in expression patterns between the LIM2 and LIM3 kinases. In addition, these protein kinases were refractory to inhibition by a panel of broad-spectrum serine/threonine kinase inhibitors, suggesting a novel derivation. The paxillin protein kinase activities were stimulated in serum-starved CHO.K1 cells by the mitogen phorbol myristate acetate (PMA), and by PMA and angiotensin II in rat aortic smooth muscle cells. In vivo labeling, phosphoamino acid analysis, and phosphopeptide mapping of paxillin immunoprecipitated from angiotensin II-stimulated smooth muscle cells confirmed an induction of paxillin serine/threonine phosphorylation and supports the contention that these newly identified paxillin kinases are dynamic components of growth factor signaling through the cytoskeleton.  相似文献   

18.
19.
20.
Cysteine-rich protein 2 (CRP2) is a cofactor for smooth muscle cell (SMC) differentiation. Here, we examined the mechanism of CRP2 distribution dynamics during SMC differentiation. CRP2 protein directly associated with F-actin through its N-terminal LIM domain and Gly-rich region, as determined by ELISA. In undifferentiated cells that contain few actin stress fibers, CRP2 was broadly distributed throughout the whole cell, including the nucleus. After induction of SMC differentiation, CRP2 localized to actin stress fibers as they formed. The stress fiber-localized CRP2 entered the nucleus because of induced actin depolymerization. These CRP2 dynamics were reproduced by in silico simulation. CRP2 localization dynamics, which affect CRP2 function, are regulated by the formation of actin stress fibers in conjunction with SMC differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号