首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pole of Enterococcus hirae (Streptococcus faecium) is more pointed than that of Bacillus subtilis; i.e. the pole of the former is prolate and the latter is oblate. Both species form their poles by constructing annular additions on the inside surface. In both cases, the thick septum starts to split from the outside before the septum is complete. Physiochemical considerations dictate that the peptidoglycan must be unstretched as laid down. However, it later becomes stressed and may stretch to increase its surface area or to change its shape. Our earlier analysis for B. subtilis demonstrated that, without the addition of new peptidoglycan, the nascent wall is stretched after it is externalized to 1.51 times the original area. The wall of partially formed poles that is already exteriorized continues to deform with further development. For E. hirae, Higgins & Shockman's measurements showed that the completed pole has a surface area 2.18 times larger than a completed septal disk and the wall changes shape very little after exteriorization. A model is presented here for the streptococcus in which the septal wall does not increase its surface area on exteriorization either by expansion or by murein insertion. Instead, the septal wall as it is split and exteriorized twists to become oblique, increasing the inner radius of the incomplete septum. In consequence of this rotation, extra layers of peptidoglycan are added to the inside face of the developing septum. This additional murein forms the more pointed pole shape for E. hirae. This "split-and-splay" model thus refines and extends the surface stress theory of E. hirae developed a decade ago by proposing a source of the extra wall needed for the formation of its prolate, more pointed, pole.  相似文献   

2.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

3.
In the rod-shaped bacterium Bacillus subtilis, new polar surfaces arise at division through the centripetal synthesis of a centrally located cross-wall. Subsequently, the cross-wall, analogous to a flat annulus, is converted into two inner layers of polar wall as the daughter cells separate. The junction of polar and cylindrical wall is marked by the presence of raised tears or wall bands formed by the splitting apart of the cross-wall at its base. New polar wall formed in this manner accounts for about 15% of the total surface area. The sequence of pole formation has been simulated by means of a generalized conic section based upon the mathematical rotation of a parabola about its longitudinal axis. Four basic measurements describe the stages of pole formation with reference to polar surface area: the equatorial diameter at the wall bands (Dmax), the division furrow (Dmin), the horizontal distance (h) from the centre of the cross-wall to Dmax and the curvature of the nascent polar surfaces. These four parameters were found to yield a close fit to measurements of polar size and shape derived from electron micrographs of cell poles in sectioned organisms. Calculations of pole curvature suggest that both the initial separation of the cross-wall and separation of the daughter cells may occur very rapidly.  相似文献   

4.
Incorporation of diaminopimelic acid into the old poles of Escherichia coli   总被引:2,自引:0,他引:2  
The surface stress theory of the ontogeny of the bacterial rod depends critically on whether the old poles continue to incorporate new material into the stress-bearing murein. If insertion of peptidoglycan continues, then seemingly the shape must become gradually rounder due to the surface stress resulting from the internal hydrostatic pressure. We have reanalysed our earlier experimental data by classifying grains with respect to distance from the nearest pole, and not from the cell centre as was done previously, and conclude that old poles do incorporate new diaminopimelic acid residues. This eliminates the model we have proposed for Gram-positive rods, which assumed diffuse growth on the cylindrical sides and that poles once formed would be rigid. The new results are consistent with another model (presented elsewhere) in which insertion of new murein occurs all over the surface, although not equally. This new model leads to elongation and division if the energetics of wall expansion is altered by the cell in a control region at a particular point of the cycle by the cell.  相似文献   

5.
With the development of a technique to visualize the ages of different portions of the sacculus, De Pedro et al. showed that the sacculus of Escherichia coli was tripartite: (i) the establish poles contained only old wall, (ii) the nascent poles (or septa) were composed entirely of new murein, and (iii) the elongating cylindrical wall was a mixture of patches of both old and new peptidoglycan. This short note presents a computer analysis of data files of work presented in the recent paper by De Pedro et al. of the growth pattern of the wall of E. coli forced to grow in a quite unusual morphology as large spheres in the presence of mecillinam. Compared with rod-shaped cells, only very small patches (spikes) of old wall were retained interspersed with new murein during the conversion to large spheroids. This subdivision appeared to be the case for both the previous wall of the poles, which are ordinarily retained intact, and the previous patches retained within the cylindrical wall. These very small patches after the conversion to spheroids were much smaller than the sidewall patches in rod-shaped cells reported previously. This implies that the mechanism that prevents the insertion of new wall into both the wall of the poles and the old wall patches of the sidewall in the presence of mecillinam is superseded by insertion throughout the old wall. The work in the De Pedro et al. paper from 2001 was done with cells of same strain as in the earlier papers with rod-shaped cells, so the results of computer analysis of the fluorescence micrographs can be critically compared.  相似文献   

6.
The variable T model for gram-negative morphology   总被引:11,自引:0,他引:11  
Gram-negative micro-organisms possess only a very thin murein sacculus to resist the stress caused by the internal hydrostatic pressure. The sacculus consists of at most one molecular layer of peptidoglycan in an extended conformation. It must grow by the insertion and cross-linking of new murein to the old before the selective cleavages of the stress-bearing murein are made which allow wall enlargement. Since insertion of new murein occurs all over the surface of Escherichia coli (even in completed poles), the internal pressure would tend to force the cells into a spherical shape and prevent both cylindrical elongation and cell division. Of course, Gram-negative bacteria do achieve a variety of shapes and do divide. Because prokaryote cells, unlike eukaryotic cells, do not have cytoskeletons and contractile proteins to transduce biochemical free energy into the mechanical work needed to achieve aspherical shapes and to divide, this paradox seems to be resolvable only by postulating that the details of the biochemical mechanism for wall growth vary in different regions of the surface, affecting the work required to enlarge the wall locally. Depending on the degree and rate of change in the biochemical energetics, it is possible to account for rod and the other more complex shapes of Gram-negative bacteria. Division occurs in Gram-negative organisms by the development of constrictions that progressively invade the cytoplasm. The work to cause these morphological processes must ultimately derive from the biochemical process of the stress-bearing wall formation. A biophysical basis for cell division in these prokaryotic organisms is proposed.  相似文献   

7.
Salmonella typhimurium strain 4a is a temperature sensitive mutant with defects in both septation and separation. The separation lesion was reversed by phenethylalcohol but this agent failed to allow septation or growth at restrictive temperature. Organisms of strain 4a grown at 42 degrees C were, unlike the parental strain, resistant to lysis by lysozyme plus EDTA and lipopolysaccharide was poorly extracted by EDTA from cultures of strain 4a grown at 42 degrees C. Such cultures may, therefore, be resistant to lysis with lysozyme plus EDTA not because the murein is altered but because the EDTA fails to permeabilize the outer membrane to lysozyme. In confirmation of this, murein isolated from strain 4a after growth at 42 degrees C showed the same sensitivity to lysozyme as murein from the parental strain. In spite of the altered envelope properties of strain 4a after growth at 42 degrees C, no major changes in protein or phospholipid composition have so far been demonstrated.  相似文献   

8.
The multiplicity of murein hydrolases found in most bacteria presents an obstacle to demonstrating the necessity of these potentially autolytic enzymes. Therefore, Escherichia coli mutants with deletions in multiple murein hydrolases, including lytic transglycosylases, amidases, and DD-endopeptidases, were constructed. Even a mutant from which seven different hydrolases were deleted was viable and grew at a normal rate. However, penicillin-induced lysis was retarded. Most of the mutants were affected in septum cleavage, which resulted in the formation of chains of cells. All three enzymes were shown to be capable of splitting the septum. Failure to cleave the septum resulted in an increase in outer membrane permeability, and thus the murein hydrolase mutants did not grow on MacConkey agar plates. In addition, the hydrolase mutants not only could be lysed by lysozyme in the absence of EDTA but also were sensitive to high-molecular-weight antibiotics, such as vancomycin and bacitracin, which are normally ineffective against E. coli.  相似文献   

9.
The effects of oryzalin and cytochalasin B (CB) on microtubule and actin microfilament arrays and on cell shaping were investigated in developing wheat mesophyll. Excised immature leaf sections capable of differentiating were incubated with the drugs. The behavior of the cytoskeleton was monitored by fluorescence microscopy after labeling with fluorescent dyes. Brief incubation with oryzalin (40 min, 10 microM) caused disassembly of microtubules. Recovery of microtubule arrays was comparatively slow after removal of the drug. Cells failed to establish transverse cortical bands of microtubules and transverse hoops of wall reinforcement. They expanded isodiametrically rather than longitudinally without forming lobes typical of wheat mesophyll cells. Brief treatment with CB (60 min, 20 micrograms ml-1) appeared to disrupt the microfilament arrays. Filaments recovered rapidly after removal of CB, and cells were able to shape in an apparently normal fashion. Continuous incubation at comparatively low concentration of CB (4 micrograms ml-1) appeared to cause selective loss of the fine transverse cortical microfilament arrays. Cortical transverse microtubule arrays persisted, but failed to form distinct bands in the majority of the cells. Cells were able to elongate in an almost normal fashion, but no lobes were formed.  相似文献   

10.
The restricted access of lysozyme to the murein layer of exponential phase Escherichia coli is enhanced considerably by osmotic shock. When cells suspended in Tris/EDTA/sucrose are diluted 11-fold in water or 10 mM EDTA in the presence of lysozyme, their susceptibility to lysozyme increases by a factor of 50--100, for both Escherichia coli JC411 and W3110, grown to the early exponential phase in unsuppleneted or supplemented minimal media, and in Brain Heart Infusion. Since an 11-fold dilution causes lysis of lysozyme spheroplasts, the effects of a 2-fold dilution have also been investigated. A 2-fold dilution of cell suspended in TrisEDTA/sucrose still increases their susceptibility to lysozyme by a factor of 10--50, but the resulting spheroplasts remain intact. EDTA is necessary to permit lysozyme access to the murein layer during the dilution, which is ineffective in the presence of 5 mM MgCl2. These results are discussed in terms of the formation of lysozyme spheroplasts from young Escherichia coli.  相似文献   

11.
Cell cycle progression for the spherical microbe Staphylococcus aureus requires the coordinated synthesis and remodeling of peptidoglycan. The majority of these rearrangements takes place at the mid-cell, in a compartment designated the cross-wall. Secreted polypeptides endowed with a YSIRK-G/S signal peptide are directly delivered to the cross-wall compartment. One such YSIRK-containing protein is the murein hydrolase LytN. lytN mutations precipitate structural damage to the cross-wall and interfere with staphylococcal growth. Overexpression of lytN also affects growth and triggers rupture of the cross-wall. The lytN phenotype can be reversed by the controlled expression of lytN but not by adding purified LytN to staphylococcal cultures. LytN harbors LysM and CHAP domains, the latter of which functions as both an N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycine endopeptidase. Thus, LytN secretion into the cross-wall promotes peptidoglycan separation and completion of the staphylococcal cell cycle.  相似文献   

12.
The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.  相似文献   

13.
The antibacterial effect of lemongrass oil, obtained from the aerial part of Cymbopogon citratus, on cells of Escherichia coli was investigated by electron microscopy and by measuring cell wall formation. Two strains of E. coli K-12 were used, one of which required diaminopimelic acid in the growth medium for its murein formation. Lemongrass oil was found to elicit morphological changes like filamentation, inhibition of septum formation, spheroplast formation, production of 'blisters', 'bulges' or mesosomes, as well as lysis and development of abnormally shaped cells. The incorporation of radioactively labelled diaminopimelic acid into the cell wall murein of strain W7, was inhibited by lemongrass oil in a dose dependent way. The sequence of changes induced by lemongrass oil on bacterial cell morphology and also its interference with murein synthesis in E. coli cells were interpreted to involve the penicillin binding proteins PBP 2 and PBP 3.  相似文献   

14.
Stages in the formation of protoplasts from S. coelicolor strain A3(2) have been studied by transmission electron microscopy. Protoplasts liberated from submerged mycelial growth were variable in size and were released when digestion of the cell wall by lysozyme had completely or almost completely taken place. Protoplasts did not fully adopt the typical rounded shape until after release. A single region of cytoplasm gave rise to more than one protoplast unit. Protoplasts released from spore germinants escaped from the tip of the germ tube, which was the region of the cell wall most susceptible to digestion. Protoplasts derived from spore germinants were more consistent in size and rounded up more rapidly. If a cross-wall had formed in a germinant then it gave rise to separate protoplasts from each cellular compartment. Protoplasts of either type contained a single DNA region. These studies give an indication of the cellular organization of a streptomycete colony, which can be visualized as a multinucleated assemblage of cellular units in a common cytoplasm. The assembly of units separates into a number of protoplasts on digestion of the cell wall.  相似文献   

15.
Cell walls of Clostridium thermohydrosulfuricum and C. thermosaccharolyticum have a two-layered structure, consisting of a thin, lysozyme-sensitive murein layer and a surface (S) layer composed of hexagonally or tetragonally arranged subunits. The subunits can be removed from the murein layer by treatment of cell wall preparations, are composed of a fragile, pH-sensitive monolayer of macromolecular subunits. In both organisms the first stage of the cell division process involves only the plasma membrane and the murein layer. During the subsequent cell separation, a surplus of S-layer subunits appears at the site of division, and consequently the newly formed cell poles remain completely covered by the s layer throughout the separation process. In autolyzed cells an additional layer of subunits assembles on extended areas of the inside of the mucopeptide layer. These observations indicate that the biological function of the S layer depends on its ability to maintain a complete covering of the cell surface at all stages of cell growth and division.  相似文献   

16.
In vivo studies on the attachment of lipoprotein to the murein (peptidoglycan) of Escherichia coli showed that it takes several generations of growth until the amount of lipoprotein on newly made murein is equilibrated. The technique used involves degradation of the sodium dodecyl sulfate-insoluble murein-lipoprotein complex (sacculus, rigid layer) with lysozyme and separation of the labeled products on paper. No lipoprotein was found on murein subunits incorporated during a pulse of [3H]diaminopimelate for 1 min in logarithmically growing cells at 37 C. Even after one doubling of the cell mass, only 4 to 8% of the labeled murein was isolated as bound to lipoprotein. With uniformly labeled murein, 30% remains bound to lipoprotein after lysozyme treatment, corresponding to three murein subunits. Therefore it can be concluded that during pulse labeling either no lipoprotein is incorporated into the newly synthesized murein or no murein subunits are inserted into existing murein around lipoprotein attachment sites. Longer pulse and pulse-chase experiments argue for the latter interpretation. It is therefore concluded that incorporation of murein subunits into the growing murein polymer is not at all a random process. Instead, quite large areas of murein, on which lipoprotein is situated, seem to be preserved. Under the influence of penicillin FL 1060 murein synthesis is 50% inhibited. The rate of lipoprotein attachment is less affected so that increasing amounts of lipoprotein become attached during spheroplast formation. By the time the stationary growth phase has been reached, the lipoprotein content of the murein has doubled. Diaminopimelate auxotrophic mutants require, in the presence of penicillin FL 1060, more diaminopimelate for full growth than in the absence of penicillin FL 1060. This finding and the fact that murein synthesis is always inhibited by 50% over a wide range of penicillin concentration (1 to 1,000 mug/ml) point to the inhibition of an enzymatic step of murein synthesis which can be partially bypassed by a second enzyme, less efficient but resistant to penicillin FL 1060.  相似文献   

17.
Among the eight strains of Listeria monocytogenes tested for lysozyme sensitivity, two were resistant to lysozyme but became sensitive after lipase pretreatment. Among the other six, one was very sensitive to lipase and another one was extremely susceptible to lysozyme. Stable protoplasts were formed from the lysozyme-resistant strain (42) by lipase and lysozyme treatment, which completely digested the cell wall. The cell wall (uranyl acetate-lead stained) was of a thick triple-layered profile, with the intermediate layer of low density. Lipase treatment for a short time (60 min) did not cause any alteration in structure, but prolonged treatment (180 min) caused extensive digestion of the plasma membrane and the cell wall, liberating cytoplasmic material. When the cells were treated with either lipase or lysozyme, a small number of protoplasts were extruded through the partly digested or weakened transverse cell wall, leaving an almost intact cell wall ghost. There were small vesicular structures in the interspace between cell wall and plasma membrane. Mesosomes of varied organization were prominent in electron micrographs, both in sections and in negatively stained preparations. These were largely everted during protoplasting in the form of tubules and as small peripheral buds; a few small vesicles also remained as intrusive structures, some of which were very unusual because they appeared to be enclosed by the inner layer of plasma membrane alone. Lysis of the protoplasts by dilution of the sucrose, while maintaining a constant ionic environment, liberated many small vesicular structures and fibrillar nuclear material.  相似文献   

18.
Alteration of Escherichia coli murein during amino acid starvation.   总被引:27,自引:20,他引:7       下载免费PDF全文
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.  相似文献   

19.
Staphylococcus aureus H Autolytic Activity: General Properties   总被引:10,自引:3,他引:7       下载免费PDF全文
Staphylococcus aureus strain H has an autolytic activity which can be found in the cell wall but is most easily obtained from high-speed supernatant fractions of broken-cell preparations. As measured either turbidimetrically or radioactively, this activity is much greater on murein extracted from penicillin-treated cells than on murein extracted from normal cells.  相似文献   

20.
The synthesis and turnover of peptidoglycan in Agmenellum quadruplicatum was investigated using D-[U-14C]alanine followed by proteolytic digestion. The rate of turnover of alanine in the peptide portion of the peptidoglycan was measured in strain BG-1 and in two division mutants of this strain: one was blocked in cell separation; and the other was a low-temperature, conditional cell division mutant. The peptide portion of peptidoglycan turned over in all three strains tested, but no correlation was observed between septum formation or cell separation and the rate of turnover. Peptidoglycan synthesis was measured during induced division in snake forms of strain SN-29. A stimulation of peptidoglycan synthesis was observed during the period of cross-wall formation, even in the absence of new protein synthesis. Thus in A. quadruplicatum, cross-wall synthesis is accompanied by a stimulation of peptidoglycan synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号