首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Western blots using a polyclonal and a monoclonal antibody raised against rat liver cytochrome P-450b indicate tissue-specific expression of low levels of cytochrome P-450's b and e. P-450b and P-450e were expressed very selectively in, respectively, lung and adrenal microsomes of untreated rats but neither isozyme was detected in the corresponding kidney or small intestine microsomes. The regioselectivity of microsomal metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) as well as the sensitivity to inhibition by anti P-450b/e IgG established that low levels of "b-like" P-450's are functional in lung and adrenal microsomes from uninduced rats, but not in microsomes from the kidney or small intestine. Functional P-450c was also detected at low levels in liver, lung, kidney, and adrenals of untreated rats. Among the extrahepatic tissues examined, DMBA metabolism was the highest in rat adrenal microsomes. However, only 30% of this activity was due to P-450's b, e, or c. Phenobarbital (PB) treatment of rats increased microsomal DMBA metabolism in all extrahepatic tissues examined. The selectivity of this increase for 12-methyl hydroxylation of DMBA and the near complete inhibition by anti-P-450b/e are consistent with induction of P-450e even though P-450b was preferentially induced in each of the extrahepatic tissues examined. The levels of expression of P-450b were increased by PB in all sets of adrenal, lung, and intestinal microsomes and in three out of six sets of kidney microsomes. The levels of P-450e were also increased by PB in all sets of adrenal microsomes. Following PB treatment, P-450e became immunoquantifiable (greater than 2 pmol/mg protein) in three of six sets of lung and kidney microsomes but remained below detection in all sets of intestinal microsomes. Based on the activity of purified P-450e, undetectable levels (less than 1 pmol/mg protein) could account for increased DMBA metabolism in this tissue. The high constitutive level of P-450b in the lung (approximately 40 pmol/mg), was remarkably inactive in DMBA metabolism and was only slightly increased by PB treatment (50%). In contrast, PB treatment caused a 2.5- to 10-fold increase in 12-methyl hydroxylation of DMBA that was highly sensitive to anti-P-450b/e. A protein comigrating with P-450e was well above detection (6-7 pmol/mg) in two of six preparations of lung microsomes that showed highest induction of this activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The prototypic members of the rat liver cytochrome P450IIB subfamily, P450b and P450e, differ by only 13 amino acids and yet purified P450b is considerably more active than P450e for all known substrates. A unique regioselectivity difference between cytochromes P450b and P450e for the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) and a genetic deficiency in P450e expression in the Marshall (M520/N) rat strain have been exploited to determine the microsomal contributions of the respective forms toward the metabolism of DMBA. The total contribution to metabolism by each isozyme has been assessed based on the sensitivity to rabbit anti-P450b/e IgG and comparison with microsomal P450b and P450e content as measured by Western blots. Liver microsomes from untreated M520/N rats do not express detectable levels of P450e but express P450b at a level that is 2-fold higher than that of P450e in liver microsomes from untreated F344 rats (50 pmol/mg). However, only 4% of the constitutive DMBA metabolizing activity of liver microsomes from the M520/N rat strain could be inhibited by anti-P450b/e IgG. A 30-fold induction of hepatic P450b by phenobarbital (PB) was also completely ineffective in increasing P450b-dependent DMBA metabolism. PB treatment had no appreciable effect on either the levels of expression of P450b protein or P450b-dependent DMBA metabolism, in M520/N lung and adrenal microsomes. In contrast, PB treatment of F344 rats considerably increased P450b/e-dependent metabolism by liver, lung, and adrenal microsomes. The regioselectivity of the anti-P450b/e-sensitive metabolism (predominantly 12-methyl hydroxylation), however, indicated a much greater contribution from P450e than P450b in every tissue examined despite a several fold higher expression of P450b than of P450e. P450b was expressed constitutively in lung microsomes from both strains but again failed to exhibit appreciable DMBA metabolizing activity. Based on these activities and microsomal P450b contents, P450b consistently exhibited turnover numbers (0.02-0.15 nmol/nmol P450b/min) that were at least 10-fold lower than those of pure P450b. In contrast, the calculated turnover numbers for microsomal P450e were consistently comparable to those of pure P450e (approximately 1 nmol/nmol P450e/min).  相似文献   

3.
Monoclonal antibody (MAb) 1-12-3 generated against liver cytochrome P-450E (P-450E), an aryl hydrocarbon hydroxylase of the marine fish Stenotomus chrysops (scup), reacted only with P-450E when tested in immunoblot analysis with five P-450 fractions from scup liver. This and six other MAbs against P-450E recognized purified P-450E, as well as a single band in beta-naphthoflavone (BNF)-induced scup microsomes that comigrated with authentic P-450E. Like MAb 1-12-3, polyclonal anti-P-450E reacted with P-450E but not with other scup P-450 fractions and reacted strongly with a band coincident to P-450E in BNF-treated scup microsomes. However, the polyclonal antibody (PAb) also faintly recognized additional microsomal proteins. MAb 1-12-3 recognized P-450E induced by 3,3',4,4',5,5'-hexachlorobiphenyl and by polychlorinated biphenyl mixtures in scup, and a single band induced by BNF or 3-methylcholanthrene (MC) in microsomes of other teleosts, including two trout species, killifish and winter flounder. The content of the P-450E counterpart in these fish and also in untreated scup coincided with induced ethoxyresorufin O-deethylase (EROD) activity. Induced EROD activity in scup and trout was strongly inhibited by MAb 1-12-3, further demonstrating the relationship between P-450E and induced P-450E in trout. MAb 1-12-3, two other MAbs, and anti-P-450E PAb recognized a band comigrating with P-450c in BNF-induced rat microsomes. MAb 1-12-3 also recognized purified rat P-450c. MAb 1-12-3 and anti-P-450E PAb recognized a second band of lower molecular weight than P-450c in BNF rat microsomes which may correspond to P-450d, the MC- and isosafrole-inducible rat isozyme. The results firmly establish the identity of scup P-450E, the relationship of BNF-induced P-450 in other teleosts with P-450E, and the immunochemical relationship of P-450E with rat P-450c. Furthermore, results with untreated fish suggest that effects of environmental chemicals may be detected by immunoblotting with monoclonal anti-P-450E.  相似文献   

4.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

5.
Polyclonal antibody has been shown previously to react identically with cytochromes P-450b and P-450e purified from Long Evans rats and a strain variant of cytochrome P-450b purified from Holtzman rats (P-450bH). In the present study, an array of 12 different monoclonal antibodies produced against cytochrome P-450b has been used to distinguish among these closely related phenobarbital-inducible rat hepatic cytochromes P-450. In immunoblots and enzyme-linked immunosorbent assays, 10 monoclonal antibodies bind to cytochromes P-450b, P-450e, and P-450bH; one monoclonal antibody (B50) recognizes cytochromes P-450b and P-450bH but not cytochrome P-450e; and one monoclonal antibody (B51) is specific for cytochrome P-450b. In addition, one monoclonal antibody (BEF29) reacts strongly with cytochrome P-450f, and another antibody (BEA33) reacts weakly with cytochrome P-450a. No cross-reactions with cytochromes P-450c, P-450d, and P-450g-P-450j were detected with any of the monoclonal antibodies in these assays. Six spatially distinct epitopes on cytochrome P-450b were identified, and differences in antibody reactivity provided evidence for three additional overlapping epitopes. Several monoclonal antibodies are potent inhibitors of testosterone and benzphetamine metabolism supported by cytochrome P-450b in a reconstituted system. B50 and BE52 do not inhibit metabolism of the two substrates by microsomes from untreated rats, but inhibit benzphetamine N-demethylation and testosterone metabolism to 16 alpha- and 16 beta-hydroxytestosterone as well as androstenedione formation 67-94% by microsomes from phenobarbital-treated rats. No other pathways of testosterone metabolism are inhibited by these monoclonal antibodies. The differential inhibition of microsomal metabolism of benzphetamine and testosterone by these monoclonal antibodies is a reflection of the content and inducibility of cytochromes P-450b and P-450e as well as other cytochrome P-450 isozymes.  相似文献   

6.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

8.
The effect of pituitary factor on the constitutive and inducible levels of hepatic phenobarbital (PB)-inducible major cytochrome P-450, P-450b and P-450e, in male and female rat livers was studied by immunoblot analyses. Although only trace amounts (approximately 4 pmol/mg protein) of P-450b and P-450e were detected in untreated adult rats, hypophysectomy increased the contents of P-450b and P-450e 58- and 14-fold, respectively, in male rats and 118- and 30-fold, respectively, in female rats. The increases were also observed in treatment with dexamethasone, which suppressed the pituitary function. Treatment with PB increased more effectively the hepatic contents of P-450b and P-450e, but their contents were still 4-fold higher in the male than the female. Treatment of hypophysectomized female rats with PB increased the contents of P-450b and P-450e 4-fold higher than the contents in PB-treated nonhypophysectomized female rats. Consequently, the sex-related difference in their contents was reduced less than 1.4-fold in the hypophysectomized rats treated with PB. Similar results were also obtained from the quantitation of microsomal O-pentylresorufin O-depentylation and testosterone 16 beta-hydroxylation. Either intermittent injection or continuous infusion of human growth hormone, but not of ovine prolactin, into hypophysectomized male and female rats decreased the contents of both cytochromes. These results indicate that growth hormone acts as a repressive factor for the constitutive and inducible levels of P-450b and P-450e in a manner different from the regulation of P-450-male and P-450-female.  相似文献   

9.
Theophylline metabolism has been studied in a reconstituted monooxygenase system with purified forms of cytochrome P-450: P-450a, P-450b, P-450d and P-450k as well as in liver microsomes of control and 3-methylcholanthrene-induced rats. Cytochrome P-450 isoforms, P-450a and P-450b, had no effect on theophylline metabolism, whereas forms P-450d and P-450k induced the synthesis of 1.3-dimethyluric acid (1.3-DMA) at the rates of 900 and 330 pmol/min/nmol of protein, respectively. The catalytic activity of these isoforms was fully inhibited by homologous monospecific antibodies. P-450c catalyzed the formation of a nonidentified metabolite. In microsomes of control animals antibodies specifically directed to cytochrome P-450k suppressed the rate of 1.3-DMA synthesis by 73%, whereas antibodies specifically raised against P-450c+d--by 11%. In microsomes of methylcholanthrene-induced animals the rate of 1.3-DMA synthesis was increased two-fold. This activity was inhibited by 61% by antibodies to cytochrome P-450k and by 18% by anti-P-450c+d antibodies.  相似文献   

10.
Pulmonary microsomal polypeptides from different strains of rats were resolved using two-dimensional electrophoresis and were further characterized by in situ peptide mapping. Triton X-114 detergent separation was used to enrich cytochromes P-450 (P-450) and other integral membrane proteins from pulmonary microsomes, and these were directly compared with corresponding polypeptides from hepatic microsomes. The results demonstrated that P-450b and epoxide hydrolase were present in the lungs of male and female rats and that their expression in this tissue was independent of phenobarbital treatment. P-450e, which is co-induced with P-450b in the liver, was not detected in pulmonary microsomes under any condition. Four other pulmonary microsomal polypeptides were characterized and preliminary evidence suggested that they represent unique isozymic forms of P-450 with three of them being related to P-450b.  相似文献   

11.
1. Formation of androstenedione (AD) 7 alpha-, 16 alpha-, 16 beta- and 6 beta-hydroxymetabolites produced in rat liver microsomes and differing by the duration of phenobarbital (PB) induction (temporal induction) has been studied. 2. Formation of 7 alpha-, 16 alpha- and 6 beta-metabolite is sexually differentiated during PB-induction. 3. The most dramatical changes were observed in the 16 beta-hydroxylase activity specific for cytochrome P-450b which increased in all rat groups investigated. 4. The immunochemical method using antibodies against P-450b/e was applied to measure its content in microsomes. 5. It was shown that the microsomal level of P-450b/e correlated (r = 0.63) with a 16 beta-hydroxylase activity in a narrow range of enzyme concentrations (from 0.16 to 0.32 nmol/mg). 6. In microsomal preparations with a higher level of P-450b/e the correlation is lower (r = 0.4). 7. The dependence of the P-450b catalytic activity on the P-450b to NADPH-cytochrome P-450 reductase relation is discussed.  相似文献   

12.
Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form.  相似文献   

13.
In the present paper, the heterogeneity of hepatic cytochrome P-450 isoenzymes in the mouse has been probed, using warfarin as the substrate. Both sex and strain differences in the in vitro microsomal metabolism of warfarin have been investigated in male and female warfarin-resistant HC and warfarin-susceptible LAC-grey mouse strains. Animals were either untreated or treated with the cytochrome P-450 inducers phenobarbitone, beta-napthoflavone or clofibrate. In both sexes and strains of mice, metabolism of warfarin was stereoselective in favour of the R(+) enantiomer. However, regioselectively was different in both strains and sexes of untreated animals. After pretreatment with phenobarbitone, increases in the rate of formation of 4' and 7-hydroxy R(+) and S(-) warfarin metabolites in HC mice were observed, compared with untreated animals. In LAC-grey mice increases in 4'-, 6-, 7- and 8-hydroxy R(+) and S(-) warfarin metabolites were noted, compared with untreated animals. This data indicated that different amounts or forms of cytochrome P-450s were responsible for warfarin metabolism after phenobarbitone treatment in the two strains. Pretreatment of animals with beta-napthoflavone resulted in significant decreases in the rat of R(+) warfarin metabolism in both strains and sexes of mice indicating that the beta-naphthoflavone-inducible cytochrome P-450 isoenzymes were less active in the metabolism of warfarin, as compared to the uninduced isoenzymes. In addition, the cytochrome P-450 isoenzyme composition in the two mouse strains was different after clofibrate pretreatment, as reflected in reduced levels of some warfarin metabolites and a reduced total metabolism of warfarin, consistent with the narrow substrate specificity of clofibrate-induced cytochrome P450IVA1 for fatty acid hydroxylation. Accordingly, it is clear that both the basal and xenobiotic inducible hepatic cytochrome P-450 isoenzymes in warfarin-resistant and susceptible mice are different and therefore have implications for the in vivo disposition of warfarin.  相似文献   

14.
15.
5 alpha-Androstane-3 beta, 17 beta-diol hydroxylase (3 beta-diol hydroxylase), a form of cytochrome P-450, was purified from rat ventral prostate, and its regulation as a function of age and 5 alpha-dihydrotestosterone (DHT) treatment was examined. Cytochrome P-450 could be quantitated by its CO difference spectrum only after partial purification from the microsomal membrane, and this was achieved by chromatography on p-chloroamphetamine-coupled Sepharose. Further purification of prostate microsomal P-450 by anion exchange chromatography yielded a preparation with a P-450 content of 8-10 nmol/mg of protein, which upon sodium dodecyl sulfate electrophoresis showed, in the molecular weight region between 50,000 and 60,000 where P-450 is expected to migrate, a single protein band of Mr 54,000. This preparation upon reconstitution with cytochrome P-450 reductase and microsomal lipid catalyzed the formation of three triols, 5 alpha-androstane-3 beta, 7 beta, 17 beta-triol, 5 alpha-androstane-3 beta, 6 alpha, 17 beta-triol, and 5 alpha-androstane-3 beta, 7 alpha, 17 beta-triol from 3 beta-diol in the ratio 1:7:3. Both turnover number and the ratio of the three products in the reconstituted system were similar to that found in prostate microsomes. These data indicate that a single form of P-450 catalyzes the formation of all three triols and that 3 beta-diol hydroxylase is the major, if not the only, form of P-450 in the prostate microsomes of untreated rats. The yield of P-450 from prostate microsomes varied as a function of age from a high level of 0.05 nmol/mg of microsomal protein in 6-week-old rats to 0.002 nmol/mg of microsomal protein in rats 11 weeks or older. 3 beta-Diol hydroxylase activity followed a similar age-related pattern varying between 2,000 and 4,000 nmol of triols formed/g of tissue/h in 6-week-old rats to 100 nmol of triols formed/g of tissue/h in 11-week-old rats. Treatment of 6-week-old rats with DHT did not prevent the age-related decrease in 3 beta-diol hydroxylase activity. However, DHT does play a role in the regulation of this enzyme since castration resulted in a loss of catalytic activity from the prostate and treatment of castrated rats with DHT caused an induction of the enzyme.  相似文献   

16.
The cytochrome P-450 (P-450) content of different regions of the rat brain was measured after partial purification of the enzyme from homogenates, and the quantitative contribution of P-450b,e and P-450c,d to brain P-450 was assessed by Western immunoblotting and immunohistochemistry using rabbit antibodies raised against purified hepatic P-450b and P-450c, respectively). P-450 could be quantitated by its reduced CO difference spectrum after chromatography of homogenates on p-chloroamphetamine-coupled Sepharose. The yield of P-450 from whole brain was 90 +/- 19 pmol/g of tissue, which is approximately 1% of the level in liver microsomes from control rats. The amount of P-450 recovered from homogenates of olfactory lobes, hypothalamus, thalamus, striatum, cerebral cortex, and brainstem varied between 40 and 100 pmol/g of tissue. The cerebellum was a region of exceptionally high P-450 content, with yields of up to 400 pmol/g whereas the substantia nigra yielded only 16-20 pmol/g. Immunohistochemical studies with anti-P-450b and anti-P-450c revealed intense staining of a limited number of cells in the cerebellum with both antibodies and in the thalamus only with anti-P-450c. In the cerebellum, both anti-P-450b and anti-P-450c stained the Bergmann glial cells together with their radial processes. Individual glial cells in the granular cell layer were also stained. There was no staining of Purkinje cells. In the thalamus, anti-P-450b gave weak staining of certain astroglia, but with anti-P-450c, there was intense staining of neuronal somata.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The basis for our previous observations [Kaminsky, L.S., Guengerich, F.P., Dannan, G.A. & Aust, S.D. (1983) Arch. Biochem. Biophys. 225, 398-404] that rates of microsomal metabolism of warfarin were markedly less than the sum of rates of the reconstituted constituent isozymes of cytochrome P-450 has been investigated. Metabolism of warfarin to 4'-, 6-, 7-, 8-, and 10-hydroxywarfarin and dehydrowarfarin by highly purified rat liver cytochrome P-450 (P-450) isozymes reconstituted with NADPH-cytochrome P-450 reductase and by hepatic microsomes from variously pretreated rats was used to probe functional consequences of P-450 isozyme/isozyme interactions and of the effect of microsomal reductase concentrations. Binary mixtures of P-450 isozymes were reconstituted and the regioselectivity and stereoselectivity were used to probe metabolism by each individual isozyme. The isozymes specifically inhibited each other to variable extents and the order of inhibitory potency was: P-450UT-F greater than P-450PB-D greater than or equal to P-450UT-A greater than or equal to P-450BNF/ISF-G greater than P-450PB/PCN-E greater than P-450PB-B greater than or equal to P-450PB-C greater than or equal to P-450BNF-B. The inhibition, possibly a consequence of aggregation, explains the low rate of microsomal metabolism relative to the metabolic potential of the component P-450 isozymes. When purified reductase was added to microsomes it appeared to bind to microsomes at different sites from endogenous reductase and it enhanced warfarin hydroxylase activity only to a minor extent, thus possibly precluding low reductase concentrations from being a major factor in the relatively low rates of microsomal metabolism. Antibody to the reductase differentially inhibited microsomal metabolism of warfarin by the various P-450 isozymes. The results suggest that the reductase and P-450 isozymes may be located differently relative to one another in the various microsomal preparations.  相似文献   

18.
Polyclonal antibodies were produced in rabbits against purified cytochrome P-450j isolated from isoniazid-treated adult male rats. The monospecificity of immunoadsorbed antibody to cytochrome P-450j was demonstrated by Ouchterlony double diffusion analyses, enzyme-linked immunosorbent assays, and immunoblots. Immunoquantitation results indicated that rat liver microsomal cytochrome P-450j content decreases between 3 and 6 weeks of age in both the male and female animal. Several xenobiotics, such as Aroclor 1254, mirex, and 3-methylcholanthrene, repressed cytochrome P-450j levels when administered to male rats. Isoniazid, dimethyl sulfoxide, pyrazole, 4-methylpyrazole, and ethanol were inducers of cytochrome P-450j in rat liver although these compounds showed different inducing potencies. Microsomes from adult male rats with chemically induced diabetes also contained elevated levels of cytochrome P-450j compared to untreated animals. Cytochrome P-450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries, and testes; however, extrahepatic cytochrome P-450j was inducible by isoniazid. Approximately 80-90% of microsomal N-nitrosodimethylamine demethylation was inhibited by antibody to cytochrome P-450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of cytochrome P-450j. The residual catalytic activity resistant to antibody inhibition may be a reflection of the inaccessibility of a certain amount of cytochrome P-450j due to interference by NADPH-cytochrome P-450 reductase based on results obtained with the reconstituted system. There was a good correlation (r2 = 0.87) between cytochrome P-450j content and N-nitrosodimethylamine demethylase activity in microsomes from rats of different ages and treated with various xenobiotics. The evidence presented indicates that cytochrome P-450j is the primary, and perhaps sole, microsomal catalyst of N-nitrosodimethylamine demethylation at substrate concentrations relevant to hepatocarcinogenesis induced by N-nitrosodimethylamine.  相似文献   

19.
R M Shayiq  N G Avadhani 《Biochemistry》1989,28(19):7546-7554
We have previously shown that phenobarbital (PB) increases hepatic mitochondrial cytochrome P-450 (P-450) content and also the ability to metabolize hepatocarcinogen, aflatoxin B1 [Niranjan, B. G., Wilson, N. M., Jefcoate, C. R., & Avadhani, N. G. (1984) J. Biol. Chem. 259, 12495-12501]. In the present study, we have purified a mitochondrial-specific P-450 with an apparent molecular mass of 52 kdaltons (termed P-450mt3) from PB-induced rat liver using a combination of hydrophobic and ion exchange column chromatography procedures. Polyclonal antibody to P-450mt3 failed to cross-react with P-450mt1 and P-450mt2 purified from beta-naphthoflavone- (BNF) induced rat liver mitochondria. Furthermore, P-450mt3 shows an N-terminal amino acid sequence (Ala-Ile-Pro-Ala-Ala-Leu-Arg-Thr-Asp) different from those of both P-450mt1 and P-450mt2, as well as microsomal P-450b. The polyclonal antibody to P-450mt3 cross-reacted with a P-450 of comparable size purified from uninduced mitochondria. These two isoforms, however, showed difference with respect to catalytic properties and amino acid composition. In vitro reconstitution experiments show that P-450mt3 can actively metabolize diverse substrates including (dimethylamino)antipyrine, benzphetamine, and aflatoxin B1 but shows a low vitamin D3 25-hydroxylase activity. The mitochondrial P-450 from uninduced livers, on the other hand, shows relatively high [229 pmol min-1 (nmol of P-450)-1] vitamin D3 25-hydroxylase activity but a considerably lower ability for aflatoxin B1 metabolism and no detectable activity for (dimethylamino)antipyrine and benzphetamine metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号