首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Y Xiong  J Menninger  D Beach  D C Ward 《Genomics》1992,13(3):575-584
A human D-type cyclin gene (CCND1/cyclin D1/PRAD1) was previously isolated by virtue of its ability to complement a triple G1 cyclin (Cln) deficiency of Saccharomyces cerevisiae and was also identified as a candidate BCL1 oncogene. We now report the molecular cloning of two additional human D-type cyclin genes, CCND2 (cyclin D2) and CCND3 (cyclin D3). All three human D-type cyclin genes encode small (33-34 kDa) proteins that share an average of 57% identity over the entire coding region and 78% in the cyclin box. The D-type cyclins are most closely related to cyclin A (39% identity) and cyclin E (36%), followed by cyclin B (29%) and cyclin C (21%). Isolation and characterization of genomic clones revealed two pseudogenes corresponding to CCND2 and CCND3, respectively. All three cyclin D genes are interrupted by an intron at the same position. CCND2 has been mapped to chromosome 12p13, and CCND3 has been mapped to chromosome 6p21.  相似文献   

3.
4.
The crystal structure of human cyclin H refined at 2.6 A resolution is compared with that of cyclin A. The core of the molecule consists of two repeats containing five helices each and forming the canonical cyclin fold also observed in TFIIB. One hundred and thirty-two out of the 217 C alpha atoms from the cyclin fold can be superposed with a root-mean-square difference of 1.8 A. The structural homology is even higher for the residues at the interface with the kinase, which is of functional significance, as shown by our observation that cyclin H binds to cyclin-dependent kinase 2 (cdk2) and that cyclin A is able to activate cdk7 in the presence of MAT1. Based on this superposition, a new signature sequence for cyclins was found. The specificity of the cyclin H molecule is provided mainly by two long helices which extend the cyclin fold at its N- and C-termini and pack together against the first repeat on the side opposite to the kinase. Deletion mutants show that the terminal helices are required for a functionally active cyclin H.  相似文献   

5.
6.
7.
Expression of cyclins and cdks throughout murine carcinogenesis.   总被引:6,自引:0,他引:6  
The overexpression and/or amplification of cell cycle regulating genes is an important factor in the progression of cancer. Recent attention has been focused on several cyclin and cdks genes whose expression were increased in many types of tumor. In this study, we investigated the expression kinetics of cyclins A, B, D1, E and cdks 1, 2, 4, 6 by RT-PCR coupled with densitometry and correlated to the growth fraction (percentage of S cells). This analysis was performed using an experimental murine leukemic model, generated by in vivo administration of murine clonogenic cells Wehi-3b injected into balb-c mice. Differential expression of cyclins and cdks was observed between normal and tumoral cells with different patterns of expression between G1 and G2M cyclins-cdks. G1 cyclins cdks expression was significantly increased in tumor cells when compared to normal cells. In the same manner, G2M cyclins cdks expression was only observed in tumor cells at a lower level than for G1 cyclins cdks, but not detected in normal cells. These differences correlated with the growth fraction for both the G1 cyclins cdks (r = 0.91, 0.94, 0.85, 0.90 and 0.96 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) and the G2M cyclins cdks (r = 0.96, 0.97 and 0.93 for cyclins A, B and cdkl respectively). Analysis of cyclins cdks expression kinetics during tumoral progression shows that cyclins A, B and cdkl were expressed from the 12th day on of disease, increased until the death of the animals and correlated with the growth fraction (r = 0.94, 0.95 and 0.97 for cyclins A, B and cdk1 respectively) (n = 20). Overexpression of other cyclins cdks were observed, from the 6th day on for cyclin D1, the 12th day for cdk2 and cdk4, the 15th day for cdk6 and the 20th day for cyclin E. These increases persisted during tumoral progression and correlated with the growth fraction (r = 0.85, 0.94, 0.93, 0.96, and 0.98 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) (n = 20). Our results demonstrated that G1 and G2-M cyclins cdks mRNA levels were increased at approximately the same time of maximal tumor growth. Only cyclin D1 overexpression occured at the initiation of tumoral development, and could therefore be considered as an early marker of cell proliferation.  相似文献   

8.
We show that the sequence of Drosophila cyclin B has greater identity with B-type cyclins from other animal phyla than with Drosophila cyclin A, suggesting that the two cyclins have distinct roles that have been maintained in evolution. Cyclin A is not detectable in unfertilized eggs and is present at low levels prior to cellularization of the syncytial embryo. In contrast, the levels of cyclin B remain uniformly high throughout these developmental stages. In cells within cellularized embryos and the larval brain, cyclin A accumulates to peak levels in prophase and is degraded throughout the period in which chromosomes are becoming aligned on the metaphase plate. The degradation of cyclin B, on the other hand, does not occur until the metaphase-anaphase transition. In cells arrested at c-metaphase by treating with microtubule destabilizing drugs to prevent spindle formation, cyclin A has been degraded in the arrested cells, whereas cyclin B is maintained at high levels. These observations suggest that cyclin A has a role in the G2-M transition that is independent of spindle formation, and that entry into anaphase is a key requirement for the degradation of cyclin B.  相似文献   

9.
10.
A fission yeast B-type cyclin functioning early in the cell cycle.   总被引:24,自引:0,他引:24  
A Bueno  H Richardson  S I Reed  P Russell 《Cell》1991,66(1):149-159
We have cloned a fission yeast gene, cig1+, encoding a 48 kd product that is most similar to cyclin B proteins. The cig1+ protein has a "cyclin box" approximately 40% identical to B-type cyclins of other species, but lacks the "destruction box" required for proteolysis of mitotic cyclins. Deletion of cig1+ had no observable effect on cell viability or progression through G2 or M phase, but instead caused a marked lag in the progression from G1 to S phase. G1 constituted approximately 70% of the cell cycle in cig1 deletion strains, as compared with less than 10% in cig1+ strains. Constitutive cig1+ overexpression was lethal, causing cessation of growth and arrest in G1. Expression of cig1+ failed to rescue an S. cerevisiae strain lacking CLN Start cyclins. Thus, cig1+ identifies a new class of B-type cyclin acting in G1 or S phase that appears to be functionally distinct from all previously described cyclin proteins.  相似文献   

11.
Cyclins play a key role in controlling progression through the cell cycle. They act as regulatory subunits of p34cdc2/CDC28 and related cyclin-dependent protein kinases (cdks). In vertebrates, cyclins B1 and B2 function during M phase, whereas cyclin A is required for S phase as well as the G2 to M phase transition. Here, we describe the identification and characterization of a novel vertebrate cyclin, termed cyclin B3. The assignment of this cyclin to the B-type subfamily is based on its cDNA-derived sequence and its pattern of expression in synchronized cells, both suggesting a distant relationship to other B-type cyclins. Interestingly, however, cyclin B3 also displays properties that resemble those of A- rather than B-type cyclins. Specifically, cyclin B3 localizes to the cell nucleus throughout the cell cycle, and is able to associate in vivo with at least two kinase subunits, p34cdc2 and p33cdk2. Furthermore, deletion of 26 amino acids from the C-terminus of cyclin B3 impairs both its interaction with kinase catalytic subunits and its nuclear localization, reminiscent of recent results obtained with cyclin A. Based on these observations, we conclude that cyclin B3 may share functional properties with both A- and B-type cyclins.  相似文献   

12.
The yeast UbL-UBA protein Dsk2 is thought to act as a shuttle protein that delivers polyubiquitinated proteins to the proteasome. Previously, we identified Xenopus Dsk2-related protein, XDRP1, as a cyclin A-interacting protein. Using Xenopus egg extracts, we further characterized its two isoforms, XDRP1L and XDRP1S, with respect to cyclin binding and its degradation. Polyubiquitinated cyclins bound to the UBA domain of XDRP1L and XDRP1S, whereas monomeric cyclins A and B bound to the UbL domain of XDRP1S but not to XDRP1L. Binding of XDRP1S with monomeric cyclins was affected by a Cdc2-mediated phosphorylation of either the XDRP1S UbL domain or cyclins. Degradation of cyclin B was also prevented by XDRP1S in a Cdc2-sensitive manner. Loss of the XDRP1S-cyclin interaction allowed cyclins to be degraded in calcium-treated CSF extracts. These results suggest that the shuttling pathway via the UbL-UBA protein XDRP1 participates in degradation of mitotic cyclins in Xenopus eggs.  相似文献   

13.
14.
Previous work has established that destruction of cyclin B is necessary for exit from mitosis and entry into the next interphase. Sea urchin cyclin B lacking an N-terminal domain is stable, permanently activates cdc2 kinase, resulting in mitotic arrest, and permanently activates the destruction pathway acting on full length cyclin B. Here we have compared the properties of clam cyclins A and B lacking related N-terminal domains. Both cyclin A delta 60 and B delta 97 bind to cdc2 kinase, keep it hyperactivated and block the completion of mitosis. By adding purified delta cyclin proteins to a cell-free system at different cell cycle times, we find that when the cell-free system reaches the cyclin destruction point in the presence of either A delta 60 or B delta 97, the cyclin destruction pathway acting on full length cyclins fails to be turned off. However, the two cyclins differ dramatically in their ability to turn on cyclin destruction. When added to emetine-arrested interphase lysates devoid of endogenous cyclins, only cyclin B delta 97 activates the cyclin destruction system; cyclin A delta 60 does not. This functional difference between the two cyclin types, the first to be described, provides strong support for the idea that the two cyclins have different roles in the cell cycle and suggests that one specialized role of the cyclin B-cdc2 complex is to activate the cyclin destruction pathway and drive cells into interphase of the next cell cycle.  相似文献   

15.
The nucleotide sequence of two zein cDNAs in hybrid plasmids A20 and B49 have been determined. The insert in A20 is 921 bp long including a 5' non-coding region of 60 nucleotides, preceded by what is believed to be an artifactual sequence of 41 nucleotides, and a 3' non-coding region of 87 nucleotides. The B49 insert is 467 bp long and includes approximately one-half the protein coding sequence as well as a 3' non-coding region of 97 nucleotides. These sequences have been compared with the previously published sequence of another zein clone, A30 . A20 and A30 , both encoding 19 000 mol. wt. zeins , have approximately 85% homology at the nucleotide level. The B49 sequence, corresponding to a 22 000 mol. wt. zein, has approximately 65% homology to either A20 or A30 . All three zeins share common features including nearly identical amino acid compositions. In addition, the tandem repeats of 20 amino acids first seen in A30 are also present in A20 and B49 .  相似文献   

16.
17.
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is a virus-encoded latent antigen essential for primary B-cell transformation. In this report we demonstrate that although the carboxy terminus of EBNA3C predominantly regulates cyclin A-dependent kinase activity, the region of greatest affinity for cyclin A lies within the EBNA3 amino-terminal homology domain of EBNA3C. Detailed mapping studies employing both in vitro binding assays and coimmunoprecipitation experiments implicated a small region of EBNA3C, amino acids 130 to 159 within the EBNA3 homology domain, as having the greatest affinity for cyclin A. The EBNA3 homology domain has the highest degree of amino acid similarity (approximately 30%) between the EBNA3 proteins, and, indeed, EBNA3B, but not EBNA3A, showed binding activity with cyclin A. We also show that EBNA3C binds to the alpha1 helix of the highly conserved mammalian cyclin box, with cyclin A amino acids 206 to 226 required for strong binding to EBNA3C amino acids 130 to 159. Interestingly, EBNA3C also bound human cyclins D1 and E in vitro, although the affinity was approximately 30% of that seen for cyclin A. Previously it was demonstrated that full-length EBNA3C rescues p27-mediated suppression of cyclin A-dependent kinase activity (J. S. Knight and E. S. Robertson, J. Virol. 78:1981-1991, 2004). It was also demonstrated that the carboxy terminus of EBNA3C recapitulates this phenotype. Surprisingly, the amino terminus of EBNA3C with the highest affinity for cyclin A was unable to rescue p27 suppression of kinase activity and actually downregulates cyclin A activity when introduced into EBV-infected cells. The data presented here suggests that the amino terminus of EBNA3C may play an important role in recruiting cyclin A complexes, while the carboxy terminus of EBNA3C is necessary for the functional modulation of cyclin A complex kinase activity.  相似文献   

18.
19.
The retinoblastoma susceptibility gene (RB) product, the retinoblastoma protein (pRb), functions as a regulator of cell proliferation. Introduction of the RB gene into SAOS-2 osteosarcoma cells, which lack functional pRb, prevents cell cycle progression. Such growth-suppressive functions can be modulated by phosphorylation of pRb, which occurs via cell cycle-regulated kinases. We show that constitutively expressed cyclins A and E can overcome pRb-mediated suppression of proliferation. pRb becomes hyperphosphorylated in cells overexpressing these cyclins, and this phosphorylation is essential for cyclin A- and cyclin E-mediated rescue of pRb-blocked cells. This suggests that G1 and S phase cyclins can act as regulators of pRb function in the cell cycle by promoting pRb phosphorylation.  相似文献   

20.
Expression of cyclins A, B1 and D1 in human breast cancer was analyzed using dual-parameter flow cytometry with simultaneous evaluation of the DNA content. The asynchronous MCF-7 breast adenocarcinoma cells were used to implement flow cytometry analysis and to analyze the cell cycle distribution of cyclins. The patterns of the cyclin expression were also analyzed in vivo in fresh tissue specimens of human breast carcinomas. The combined measurement of DNA and cyclins showed a higher cyclin expression in aneuploid (11.5 +/- 2.0%, 4.3 +/- 1.1%, and 19.5 +/- 3.4% positive cells for cyclins A, B, and D1, respectively) than in diploid carcinomas (3.9 +/- 1.2%, 1.1 +/- 0.4%, and 5.0 +/- 1.2% positive cells for cyclins A, B, and D1, respectively). A positive relationship was also found between cyclin A and D1 expression and H(3)-thymidine labeling index. In the in vitro model, the asynchronous growing MCF-7 cells showed a variable number of cells expressing cyclins in an unscheduled way, unrelated to the phase at which these cyclins are expressed in normal cells. A similar condition was also observed in tumors. In conclusion, the data showed a deregulated expression of cyclins in a transformed adenocarcinoma cell line and in breast tumors. Furthermore, overexpression of these proteins is related to the aneuploid and high proliferative activity of human mammary carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号