首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both oxidative stress and β-MHC expression are associated with pathological cardiac hypertrophy. β-adrenergic receptor stimulation plays an important role in cardiac hypertrophy. Recent studies have reported a negative interplay between opioid receptors and adrenoceptors in heart. This study investigated the effect of U50,488H (a selective κ-opioid receptor agonist) on myocardial oxidative stress and α- and β-MHC expression in isoproterenol-induced cardiac hypertrophy. Male Wistar rats were administered normal saline (control), isoproterenol (ISO) (5 mg/kg BW s.c. OD), and isoproterenol with U50,488H (0.4 and 0.6 mg/kg BW, i.p. OD) for 14 days. In a separate group, nor-binaltorphimine (nor-BNI) (0.5 mg/kg, BW, i.p.) (κ-receptor antagonist) was administered along with ISO and U50,488H. ISO administration caused significant increase in left ventricular (LV) wall thicknesses, LV mass in echocardiography, heart weight to body weight ratio, and myocyte size as compared to control. Both the doses of U50,488H offered significant protection against these changes. The higher dose of U50,488H significantly prevented ISO-induced increase in myocardial lipid peroxidation and depletion of myocardial antioxidants (glutathione, superoxide dismutase, and catalase), while a similar trend (although not significant) was observed with the lower dose also. ISO-induced myocardial fibrosis was also significantly attenuated by both the doses of U50,488H. Isoproterenol-induced β-MHC expression in the hypertrophied heart was not altered by either doses of U50,488H, however, the latter prevented the loss of myocardial α-MHC expression. All these effects of U50,488H were blocked by nor-BNI. This study provides the evidence that U50,488H reduced oxidative stress and preserved expression of α-MHC in isoproterenol-induced cardiac hypertrophy.  相似文献   

2.
Chronic but not acute administration (21 days) of desipramine (10 mg/kg), amitriptyline (10 mg/kg) or iprindole (5 mg/kg) enhanced the stimulatory effect of the α1-adrenergic agonist phenylephrine on the acoustic startle reflex when phenylephrine was infused into the subarachnoid space of the spinal cord. Comparable supersensitivity to phenylephrine also occurred 1 week after selective depletion of norepinephrine in the spinal cord via intrathecal administration of 6-hydroxydopamine. Behavioral supersensitivity to phenylephrine was associated with an increase in the number of 3H-prazosin binding sites following denervation but not following chronic antidepressant treatments. The results indicate that chronic antidepressant treatments may enhance functional α1-adrenergic transmission through mechanisms different than those following denervation.  相似文献   

3.
The role of cyclic AMP in stimulus-secretion coupling was investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20–30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both α-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effective. A parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fraction. The results suggest that these drugs are acting on the parotid acinar cell through a β1-adrenergic mechanism.At the lowest concentrations tested, each of the adrenergic agonists stimulated significant α-amylase release with no detectable stimulation of cyclic AMP accumulation. Even in the presence of theophylline, phenylephrine at several concentrations increased α-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intracellular concentration of cyclic AMP may not be necessary for stimulation of α-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of α-amylase release by isoproterenol.Stimulation of α-amylase release by phenylephrine was only partially blocked by either α- or β-adrenerg blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolamine. Phenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and α-amylase release. However, phenoxybenzamine also potentiated the stimulation of α-amylase release by N6,O2′-dibutyryl adenosine 3′,5′-monophosphate. These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using α-adrenergic blocking agents as tools for investigation of α- and β-adrenergic antagonism.  相似文献   

4.
The beneficial effect of garlic on cardiovascular disease is well known. However, the use of raw garlic against cardiac hypertrophy is not established. In the present study we explored whether raw garlic and its compound, diallyl disulfide (DADS) could inhibit hypertrophy through H2S and/or mitochondrial biogenesis. Cardiac hypertrophy was induced in rat by giving isoproterenol at the dose of 5 mg/kg/day subcutaneously for 14 days through alzet minipump. Aqueous garlic homogenate, DADS and NaHS (liberate H2S) were fed to third, forth and fifth group of rats for 14 days at a dose of 250 mg/kg/day, 50 mg/kg/day, 14 µM/kg/day respectively. Garlic and DADS reduced cardiac hypertrophy markers and normalized mitochondrial ETC-complex activities, mitochondrial enzyme activites and mitochondrial biogenetic and apoptotic genes expression. Garlic and DADS enhanced eNOS and p-AKT level in rat heart along with increased NRF2 protein level and Tfam gene expression. However, normalization was not observed after administration of NaHS which generates H2S in-vivo. In conclusion, garlic and DADS induces mitochondrial biogenesis and ameliorates cardiac hypertrophy via activation of eNOS-Nrf2-Tfam pathway in rats.  相似文献   

5.
6.
Adult male rats were injected either with α- or ß-adrenergic agonists and/ or antagonists and ornithine decarboxylase (ODC) activity in the heart and aorta was measured 4 hours later. At the lower doses, isoproterenol (0.2–0.4 mg/kg) resulted in a 10-fold increase in cardiac ODC activity but caused no significant change in aortic ODC activity. In contrast, phenylephrine (1 mg/kg) caused a 4-fold increase in aorta but no change in cardiac ODC activity levels. Phenoxybenzamine pretreatment completely abolished the PE-induced increase whereas no change was seen in ISop injected animals. Similarly, pretreatment with propranolol blocked the ISop induced response on ODC activity but had no effect on the increases observed after PE. These data suggest that the sympathetic regulation of ODC activity levels is mediated primarily via the ß-receptor in the heart but through the α-receptor in the aorta.  相似文献   

7.
The cyclin-dependent kinase inhibitor p21CIP1/WAF1 (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0 mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10 mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.  相似文献   

8.
The amount of type I and type II cyclic AMP-dependent protein kinase present in the rat heart was determined at various times during isoproterenol-induced cardiac hypertrophy. Wistar rats were injected twice daily with isoproterenol (5 mg/kg, s.c.) for 2, 5 or 10 days. Cardiac weight increased gradually over the 10-day period of drug administration, and by day 10, heart weight was 156% of control. Following the cessation of isoproterenol administration, the cardiac weight regressed toward the control value by day 15. An increase in the specific activity of type I protein kinase to 197% of control occurred by day 10. The specific activity of type II protein kinase did not change significantly during either the hypertrophy or regression stage. The increase in the specific activity of type I protein kinase during a chemically-induced trophic response of the heart may indicate that type I cyclic AMP-dependent protein kinase plays a regulatory function in this process.  相似文献   

9.
We studied the ability of the ECG to detect pathological changes in isoproterenol-induced remodeling of rat heart. Myocardial hypertrophy in rats was induced by repeated injections of isoproterenol (5 mg/kg s.c. 7 days, Iso5, n=7). Single overdose of isoproterenol (150 mg/kg s.c., Iso150, n=7) evoked myocardial infarction followed with ventricular remodeling. The electrocardiograms were recorded in anesthetized animals (thiopenthal 45 mg/kg i.p.) and myocardial contractile performance was analyzed in isolated hearts perfused according to Langendorff. The hypertrophic hearts were characterized by increased heart and left ventricular (LV) weight as well as by thicker LV free wall and interventricular septum. Mean values of LV contraction did not significantly differ from controls. Longer QT interval, QRS complex, negative Q and S waves, higher R amplitude were typical characteristics for Iso5 rats. Iso150 animals showed tendency to decreased systolic blood pressure and heart frequency. Decrease in the thickness of LV compared to Iso5 as well as impaired LV function were related to the dilated left ventricle. Iso150 ECG showed longer QRS and QT, deepened negativity of S wave and mild decrease of R(II) compared to Iso5. Voltage criteria showed that Sokolow-Lyon index is a good predictor of left ventricular hypertrophy in isoproterenol-induced cardiac remodeling without systemic hypertension.  相似文献   

10.
Oxidative stress has been implicated in the pathogenesis of cardiac hypertrophy and associated heart failure. Cardiac tissue grows in response to pressure or volume overload, leading to wall thickening or chamber enlargement. If sustained, this condition will lead to a dysfunctional cardiac tissue and oxidative stress. Calorie restriction (CR) is a powerful intervention to improve health and delay aging. Here, we investigated whether calorie restriction in mice prevented isoproterenol-induced cardiac hypertrophy in vivo by avoiding reactive oxygen species (ROS) production and maintaining antioxidant enzymatic activity. Additionally, we investigated the involvement of mitochondrial ATP-sensitive K+ channels (mitoKATP) in cardiac hypertrophy. CR was induced by 40% reduction in daily calorie ingestion. After 3 weeks on CR or ad libitum (Control) feeding, Swiss mice were treated intraperitoneally with isoproterenol (30 mg/kg per day) for 8 days to induce hypertrophy. Isoproterenol-treated mice had elevated heart weight/tibia length ratios and cardiac protein levels. These gross hypertrophic markers were significantly reduced in CR mice. Cardiac tissue from isoproterenol-treated CR mice also produced less H2O2 and had lower protein sulfydryl oxidation. Additionally, calorie restriction blocked hypertrophic-induced antioxidant enzyme (catalase, superoxide dismutase and glutathione peroxidase) activity repression during cardiac hypertrophy. MitoKATP opening was repressed in isolated mitochondria from hypertrophic hearts, in a manner sensitive to calorie restriction. Finally, mitoKATP inhibition significantly blocked the protective effects of calorie restriction. Altogether, our results suggest that CR improves intracellular redox balance during cardiac hypertrophy and prevents this process in a mechanism involving mitoKATP activation.  相似文献   

11.
Severe aortic constriction in rats produced cardiac hypertrophy and a chronic decrease in cardiac actomyosin ATPase activity during a six week postoperative period. Two weeks following aortic constriction, Ca2+ stimulated cardiac myosin ATPase activity was also depressed; the Km and Vmax were decreased by 86.2% (p < 0.0025) and 84.4% (p < 0.0025), respectively, when compared to sham operated controls. Administration of thyroxine (100 μg/kg/day for 14 days), which was initiated on the same day as aortic constriction, prevented, to a large extent, the decrease in cardiac myosin ATPase activity. The Km and Vmax of myosin from animals with aortic constriction showed substantially smaller decreases as a result of concomitant thyroxine administration (p < 0.0025 for the change from aortic constriction without thyroxine treatment). Thyroxine treatment in rats with aortic stenosis resulted in an additional increment of cardiomegaly when compared to animals with aortic constriction alone. The results of this study indicate that thyroxine, which normally has no effect on Ca2+ activated cardiac myosin ATPase in the rat, can prevent the decrease in myosin ATPase activity which results from severe aortic stenosis.  相似文献   

12.
Myocardial hypertrophy has been linked to the development of a variety of cardiovascular diseases, and is a risk factor for myocardial ischemia, arrhythmias, and sudden cardiac death. The objective of the present study was to evaluate the cardioprotective effects of Danshensu (DSS), a water-soluble active component of Danshen, on cardiac hypertrophy in rats. We are the first to report that DSS reversed Cx43 down-regulation in ventricular tissue. Cardiomyopathy in rats was produced using isoproterenol (Iso) treatment (2.5 mg/kg/d, s.c.) for seven days. DSS (3 and 10 mg/kg/d, i.p.) and Valsartan (Val) (10 mg/kg, i.g.) were administered on days 4-7 of Iso-treatment. Heart weight index, hemodynamic parameters, and ECG II parameters were monitored and recorded; protein expression of left ventricular connexin 43 (Cx43) and the activity of the redox system were assayed, and arrhythmias were produced using a coronary ligation/reperfusion procedure. The results demonstrated that DSS treatment significantly decreased heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW) ratios. The protective role of DSS against Iso-induced myocardial hypertrophy was further confirmed using ECG. The incidences of ventricular tachycardia and ventricular fibrillation (VT, VF) and arrhythmic scores were higher in the model group and were suppressed by DSS. DSS decreased the serum and myocardium levels of creatine kinase, lactate dehydrogenase, and malondialdehyde (CK, LDH, and MDA) and increased serum activity of superoxide dismutase (SOD) in a dose-dependent manner. Cx43 expression in the left ventricle was down-regulated, and there was significant oxidative stress in this model of cardiomyopathy. DSS reversed the down-regulated Cx43 protein levels and showed potent anti-oxidative activities and cellular protection. These data demonstrate that DSS can prevent cardiac I/R injury and improve cardiac function in a rat model of hypertrophy, the effects partially resulting from antioxidants and the protection from Cx43 expression.  相似文献   

13.
AimsThis study was performed to assess isolated and combined effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of the β1- and β2-adrenergic receptors in the heart of rats.Main methodsWistar rats were randomly divided into four groups and submitted to a 6-week treatment with nandrolone and/or resistance training. Cardiac hypertrophy was accessed by the ratio of heart weight to the final body weight. Blood pressure was determined by a computerized tail-cuff system. Electrocardiography analyses were performed. Western blotting was used to access the protein levels of the β1- and β2-adrenergic receptors in the right atrium and left ventricle.Key findingsBoth resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased systolic blood pressure depending on the treatment time. Resistance training decreased systolic, diastolic and mean arterial blood pressure, as well as induced resting bradycardia. Nandrolone prolonged the QTc interval for both trained and non-trained groups when they were compared to their respective vehicle-treated one. Nandrolone increased the expression of β1- and β2-adrenergic receptors in the right atrium for both trained and non-trained groups when they were compared to their respective vehicle-treated one.SignificanceThis study indicated that nandrolone, associated or not with resistance training increases blood pressure depending on the treatment time, induces prolongation of the QTc interval, and increases the expression of β1- and β2-adrenergic receptors in the cardiac right atrium, but not in the left ventricle.  相似文献   

14.
Multikinase inhibitors (e.g. Sorafenib), phosphodiesterase-5 inhibitors (e.g. Tadalafil), and endothelin-1 receptor blockers (e.g. Macitentan) exert influential protection in a variety of animal models of cardiomyopathy; however, their effects on thyroxin-induced cardiomyopathy have never been investigated. The goal of the present study was to assess the functional impact of these drugs on thyroxin-induced hemodynamic changes, cardiac hypertrophy and associated altered responses of the contractile myocardium both in-vivo at the whole heart level and ex-vivo at the cardiac tissue level. Control and thyroxin (500 μg/kg/day)-treated mice with or without 2-week treatments of sorafenib (10 mg/kg/day; I.P), tadalafil (1 mg/kg/day; I.P or 4 mg/kg/day; oral), macitentan (30 and 100 mg/kg/day; oral), and their vehicles were studied. Blood pressure, echocardiography and electrocardiogram were non-invasively evaluated, followed by ex-vivo assessments of isolated multicellular cardiac preparations. Thyroxin increased blood pressure, resulted in cardiac hypertrophy and left ventricular dysfunction in-vivo. Also, it caused contractile abnormalities in right ventricular papillary muscles ex-vivo. None of the drug treatments were able to significantly attenuate theses hemodynamic changes or cardiac abnormalities in thyroxin-treated mice. We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), phosphodiesterase-5, and endothelin-1 pathways have no major role in thyroxin-induced hemodynamic changes and cardiac abnormalities. In particular, our data show that the involvement of endothelin-1 pathway in thyroxine-induced cardiac hypertrophy/dysfunction seems to be model-dependent and should be carefully interpreted.  相似文献   

15.
BackgroundCardiac hypertrophy is the early stage of many heart diseases, such as coronary heart disease, hypertension, valvular dysfunction and cardiomyopathy. Cardiomyocyte autophagy and apoptosis play an important role in the process of cardiac hypertrophic response. Plantago asiatica L. seeds extract (PASE) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PASE could relieve cardiac hypertrophy has not been elucidated. The present study is aimed to investigate the effect of PASE on cardiac hypertrophy and explore its potential underlying mechanism.MethodsCardiac hypertrophy was induced in C57BL/6 mice by subcutaneous injection of isoproterenol (ISO) for two weeks. Meanwhile, the mice were intraperitoneally injected with PASE at dosages of 20, 40 and 80 mg/kg/day. Cardiac hypertrophy was evaluated by echocardiographic examination, haematoxylin and eosin staining and quantitative real-time polymerase chain reaction. Expressions of proteins involved in autophagy and apoptosis such as Beclin1, p62, LC3II, Bax, Bcl-2 and Cleaved-caspase-3 were detected by western blot analysis. Western blot, transient transfection, acridine orange staining, TUNEL staining and autophagy inducer were used to observe the effect and explore the mechanism of PASE on cardiomyocyte and H9c2 cells with excessive autophagy and apoptosis induced by ISO.ResultsISO induction for two weeks disturbed the myocardial contractility and cardiac function of left ventricles of mice. PASE treated mice showed significantly improved cardiac function indexes, including EF, FS, SV and CO, compared with the ISO group. Treatment with PASE also decreased the heart weight/body weight ratio and cardiomyocyte size, and downregulated the mRNA and protein expressions of hypertrophic markers ANP, BNP, and β-MHC. Furthermore, the changes of autophagy and apoptosis markers, such as LC3II, Beclin1, p62, Bcl-2, Bax and Cleaved-caspase-3 induced by ISO were resumed by PASE treatment. Consistently, PASE demonstrated similar effects on ISO-induced H9c2 cells as it did in vivo. In addition, PASE could counteract the increased autophagy induced by the autophagy inducer, rapamycin.ConclusionPASE attenuated ISO-induced cardiac hypertrophy in mice by inhibiting excessive autophagy and apoptosis in cardiomyocytes. The novel findings may pave the way for the clinical usage of PASE for the prevention of heart diseases related with cardiac hypertrophy.  相似文献   

16.
The aim of this study was to evaluate the effects of AVE 0991 (AVE), a nonpeptide compound that mimics Ang-(1-7) actions, on cardiac remodeling. Heart hypertrophy and heart dysfunction were induced by isoproterenol (ISO) (2 mg/kg i.p./day for 7 days) in male Wistar rats. At the end of the 7-day period, the hearts were perfused according to the Langendorff method to evaluate cardiac function. The hearts, atria, and right and left ventricles wet weights were recorded, normalized for body weight and then expressed as muscle mass index (mg/g). In addition, serial sections from left ventricle were stained with hematoxylin-eosin for cell morphometry and with collagen-specific Masson's trichrome for detection of fibrosis. Immunofluorescence-labeling and confocal microscopy were used to investigate the distribution and deposition of collagen types I, III, VI, and fibronectin. AVE reduced the ISO-induced hypertrophy as quantified by myocyte diameter measurements (Control: 10.60+/-0.08 microm; ISO: 14.60+/-0.11 mum; ISO+AVE: 11.22+/-0.08 microm, n = 5). In addition, AVE markedly attenuated the increase of extracellular matrix proteins induced by ISO. AVE treatment also attenuated the decrease in systolic tension and +/-dT/dt and exacerbated the vasodilatation induced by ISO. These results show that AVE has a cardioprotective effect on ISO-induced cardiac remodeling.  相似文献   

17.
80 rats, randomly selected, were divided into 3 treatment groups: pre-, co- and post-treatment; consisting of 6 sub-groups each (5 rats per sub-group): baseline, normal saline (2 mL), α-lipoic acid (20 mg/kg body weight), 200 mg/kg, 400 mg/kg or 800 mg/kg body weight Theobroma cacao stem bark aqueous extract (TCAE). All rats except for baseline group were intoxicated with 20 mg/kg body weight doxorubicin (DOX) intraperitoneally. The animals in pre- or post-treatment group received a single dose of DOX (20 mg/kg body weight) intraperitoneally 24 h before or after 7 days’ oral administration with TCAE respectively while those in co-treatment group were co-administered 2.86 mg/kg body weight of DOX with either normal saline, α- lipoic acid or TCAE orally for 7 days. Animals were sacrificed (pre- and post- treatment groups were sacrificed on the ninth day while the co-treatment group sacrificed on the 8th day). Brain and heart tissue samples were harvested for enzyme markers of toxicity, oxidative stress and histopathological examinations. DOX intoxication caused significant decrease in activities of LDH and ACP, and increase in γGT and ALP activities in brain tissues while causing a significant increase in LDH, ACP, γGT activities and decrease in ALP activity in the cardiac tissues. DOX intoxication caused a significant increase in concentrations of H2O2 generated, MDA and PC, XO, MPx and NOX activities with concomitant decrease in CAT, SOD, GPx and GST activities, and in concentrations of GSH, AsA and α-Toc in brain and cardiac tissues. Pre-, co- and post-treatment with TCAE at either 200 mg/kg, 400 mg/kg or 800 mg/kg body weight significantly reversed the oxidative damage to the organs induced by DOX-intoxication. The result affirmed that T. cacao stem bark aqueous extract protected against DOX induced oxidative damage in brain and cardiac tissues of experimental rats.  相似文献   

18.
Besides the reduction of angiotensin II formation, locally increased kinins may play a role in the cardiovascular action of angiotensin converting enzyme (ACE) inhibitors.To characterize the contribution of bradykinin to the effects of ACE inhibition by captopril on the development of pressure overload hypertrophy, sham-operated rats and rats with ascending aortic constriction were treated with captopril (80 mg/kg/day) or captopril and B2-kinin receptor antagonist HOE 140 (0.5 mg/kg/day) for 7 weeks. Left ventricular mass and geometry, hydroxyproline concentration and myosin isozymes (marker of a fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and diastolic pressure-volume relationship was shifted to smaller volumes. Signs of congestive heart failure were not apparent. The hydroxyproline concentration remained unaltered. However, the proportion of isomyosin V3 was increased (p < 0.05). Administration of captopril reduced (p < 0.05) systolic blood pressure, body and cardiac weight in all treated rats. The reduction of left ventricular weight was disproportionally higher in pressure overloaded rats, thus the relative left ventricular weight decreased by 15% (p < 0.05). Captopril augmented the isomyosin V1 expression (p < 0.05) in sham operated as well as pressure overloaded rats. The isomyosin V1 percentage was inversely related to the relative left ventricular weight. Two different (p < 0.05) correlation lines were detected for untreated and captopril treated rats. None of captopril associated effects were removed by simultaneously administered B2 kinin receptor antagonist HOE 140.Thus, stimulation of bradykinin B2 receptor appears not to mediate the effects of captopril on cardiac growth and contractile proteins during the development of pressure overload hypertrophy.  相似文献   

19.
BackgroundCardiac hypertrophy and fibrosis are hallmarks of cardiac remodeling and are involved functionally in the development of heart failure (HF). However, it is unknown whether Zerumbone (Zer) prevents left ventricular (LV) systolic dysfunction by inhibiting cardiac hypertrophy and fibrosis.PurposeThis study investigated the effect of Zer on cardiac hypertrophy and fibrosis in vitro and in vivo.Study Design/methodsIn primary cultured cardiac cells from neonatal rats, the effect of Zer on phenylephrine (PE)-induced hypertrophic responses and transforming growth factor beta (TGF-β)-induced fibrotic responses was observed. To determine whether Zer prevents the development of pressure overload-induced HF in vivo, a transverse aortic constriction (TAC) mouse model was utilized. Cardiac function was evaluated by echocardiography. The changes of cardiomyocyte surface area were observed using immunofluorescence staining and histological analysis (HE and WGA staining). Collagen synthesis and fibrosis formation were measured by scintillation counter and picrosirius staining, respectively. The total mRNA levels of genes associated with hypertrophy (ANF and BNP) and fibrosis (Postn and α-SMA) were measured by qRT-PCR. The protein expressions (Akt and α-SMA) were assessed by western blotting.ResultsZer significantly suppressed PE-induced increase in cell size, mRNA levels of ANF and BNP, and Akt phosphorylation in cardiomyocytes. The TGF-β-induced increase in proline incorporation, mRNA levels of Postn and α-SMA, and protein expression of α-SMA were decreased by Zer in cultured cardiac fibroblasts. In the TAC male C57BL/6 mice, echocardiography results demonstrated that Zer improved cardiac function by increasing LV fractional shortening and reducing LV wall thickness compared with the vehicle group. ZER significantly reduced the level of phosphorylated Akt both in cultured cardiomyocytes treated with PE and in the hearts of TAC. Finally, Zer inhibited the pressure overload-induced cardiac hypertrophy and cardiac fibrosis.ConclusionZer ameliorates pressure overload-induced LV dysfunction, at least in part by suppressing both cardiac hypertrophy and fibrosis.  相似文献   

20.
1 mg/kg L-thyroxine was administered to rats for 14 days to evaluate the potential of the hyperthyroid state to induce heart hypertrophy and its effect on myosin adenosine-triphosphatase (ATPase) activity. Evidence of hyperthyroidism such as weight loss, elevation of rectal temperature, increased heart rate and oxygen consumption, was observed in all treated rats. Cardiac enlargement was determined by comparison of wet and dry ventricle weights, myocardial RNA, DNA and protein content. Wet and dry ventricle weights and the level of cardiac RNA and protein were augmented by thyroxine treatment. ATPase activity of cardiac myosin was stimulated as the Ca2+ concentration in the incubation medium increased. No difference was found in Ca2+-activation, salt sensitivity or ATPase activity of unreacted and sulphydrylmodified cardiac myosins from euthyroid or hyperthyroid groups. The results showed that in hyperthyroid rats, in contrast to some other species, the biochemical mechanism responsible for the enhancement of cardiac contractility is not an increased myosin ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号