首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In five vancomycin-resistant laboratory step mutants selected from the highly and homogeneously methicillin-resistant Staphylococcus aureus strain COL (MIC of methicillin, 800 microg/ml; MIC of vancomycin, 1.5 microg/ml), the gradually increasing levels of resistance to vancomycin were accompanied by parallel decreases in the levels of methicillin resistance and abnormalities in cell wall metabolism. The latter included a gradual reduction in the proportion of highly cross-linked muropeptide species in peptidoglycan, down-regulation of the production of penicillin-binding protein 2A (PBP2A) and PBP4, and hypersensitivity to beta-lactam antibiotics each with a relatively selective affinity for the various staphylococcal PBPs; the PBP2-specific inhibitor ceftizoxime was particularly effective.  相似文献   

2.
A new beta-lactam-inducible penicillin-binding protein (PBP) that has extremely low affinity to penicillin and most other beta-lactam antibiotics has been widely found in highly beta-lactam(methicillin)-resistant Staphylococcus aureus (MRSA). The gene for this protein was sequenced and the nucleotide sequence in its promoter and close upstream area was found to show close similarity with that of staphylococcal penicillinase, while the amino acid sequence over a wide range of the molecule was found to be similar to those of two PBPs of Escherichia coli, the shape-determining protein (PBP 2) and septum-forming one (PBP 3). Probably the MRSA PBP (Mr 76462) evolved by recombination of two genes: an inducible type I penicillinase gene and a PBP gene of a bacterium, causing the formation of a beta-lactam-inducible MRSA PBP.  相似文献   

3.
All methicillin resistant S. aureus (MRSA) strains carry an acquired genetic determinant – mecA or mecC - which encode for a low affinity penicillin binding protein –PBP2A or PBP2A′ – that can continue the catalysis of peptidoglycan transpeptidation in the presence of high concentrations of beta-lactam antibiotics which would inhibit the native PBPs normally involved with the synthesis of staphylococcal cell wall peptidoglycan. In contrast to this common genetic and biochemical mechanism carried by all MRSA strains, the level of beta-lactam antibiotic resistance shows a very wide strain to strain variation, the mechanism of which has remained poorly understood. The overwhelming majority of MRSA strains produce a unique – heterogeneous – phenotype in which the great majority of the bacteria exhibit very poor resistance often close to the MIC value of susceptible S. aureus strains. However, cultures of such heterogeneously resistant MRSA strains also contain subpopulations of bacteria with extremely high beta-lactam MIC values and the resistance level and frequency of the highly resistant cells in such strain is a characteristic of the particular MRSA clone. In the study described in this communication, we used a variety of experimental models to understand the mechanism of heterogeneous beta-lactam resistance. Methicillin-susceptible S. aureus (MSSA) that received the mecA determinant in the laboratory either on a plasmid or in the form of a chromosomal SCCmec cassette, generated heterogeneously resistant cultures and the highly resistant subpopulations that emerged in these models had increased levels of PBP2A and were composed of bacteria in which the stringent stress response was induced. Each of the major heterogeneously resistant clones of MRSA clinical isolates could be converted to express high level and homogeneous resistance if the growth medium contained an inducer of the stringent stress response.  相似文献   

4.
Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.  相似文献   

5.
The penicillin-binding proteins (PBP) of a methicillin-resistant strain of Staphylococcus epidermidis, 100,604 p+m+ and a non-isogenic sensitive strain, p-m- were characterised. The presence of a novel PBP, produced by the methicillin-resistant strain of S. epidermidis, with an Mr identical to that of PBP2' in Staphylococcus aureus 13,136 p-m+, was revealed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis and subsequent fluorography of solubilised membrane proteins isolated from cells labelled with [3H]benzylpenicillin. This novel PBP was only detected in cells which had been grown at 30 degrees C, in media containing beta-lactam antibiotic and 5% NaCl. The sensitivity of an attachment transpeptidation reaction measured under non-growing conditions in the sensitive and resistant strains indicated that the novel PBP catalysed this reaction. The similarity of radiolabelled peptides resulting from partial proteolytic digestion of the novel PBP in S. epidermidis 100,604 p+m+ and from PBP2' in S. aureus 13,136 p+m+ lends support to the theory that the additional DNA encoding PBP2' in S. aureus and the same protein in S. epidermidis has been passed to both species from an unknown source. Studies of the development and loss of resistance of attachment transpeptidase activity, and the appearance and disappearance of the novel protein when cultures of the resistant strain were transferred from conditions allowing the expression of resistance to those not allowing such expression and vice-versa, indicated that there was a strong correlation between the presence of PBP2' and the degree of resistance of the attachment transpeptidation reaction and that the production of this protein was affected by temperature at a regulatory or genetic level. Studies on the induction and loss of beta-lactamase activity and of the novel PBP when the resistant strain was grown in the presence or absence of beta-lactam antibiotics at either 40 degrees C or 30 degrees C suggests that there is little relationship between the production of this enzyme and of PBP2' other than the fact that beta-lactam antibiotics are common inducers of both.  相似文献   

6.
A total of 12 non-epidemiologically related clinical isolates of Streptococcus mitis that showed different levels of resistance to penicillin were studied. Membrane-protein profiles and penicillin-binding protein (PBP) patterns showed a great polymorphism; and patterns of 4–7 PBPs, with sizes that ranged from ~101 kDa to ~40 kDa, were detected in each strain. No association could be found between PBP pattern and resistance level to penicillin among these isolates. Arbitrarily primed PCR confirmed the genetic diversity among this group of streptococci. One of the isolates of intermediate level of resistance to penicillin, which showed a PBP pattern similar to that of the high-resistance strains, was used as a laboratory model to analyse the mechanism underlying high-resistance acquisition by these strains. A 14-fold increase in penicillin resistance was obtained after a single selection step, which resulted in a decrease in penicillin affinity for PBP1. The size of this PBP (92 kDa) and the differences in PBP profiles of the penicillin-resistant clinical isolates suggest the existence in S. mitis of PBP-mediated mechanisms to acquire high-level resistance to penicillin, among which alterations in PBP1 seem to play a main role, in contrast to the PBP2X mediated mechanism described for other streptococci. Electronic Publication  相似文献   

7.
Penicillin-binding proteins 5 (PBP5s) of enterococci are structurally and immunologically related proteins that are characterized by their low affinity for penicillin. For this reason, they are mainly involved in penicillin resistance, due essentially to their ability to take over the function of all other PBPs already bound and inhibited by the beta-lactam. It has been demonstrated that penicillin resistance in enterococci is acquired either by overproduction of PBP5 or by the presence of specific amino acid sequences in the protein that further decrease the affinity for penicillin. In particular, a specific amino acid box (ANNGA) previously identified in Enterococcus faecium is responsible for the high penicillin resistance displayed by this species. Here, we describe the insertion of the PBP5 amino acid box ANNGA in Enterococcus faecalis, an enterococcal species usually more sensitive to penicillin, by site-directed mutagenesis. Mutagenized PBP5 was re-introduced into a pbp5 mutant of E. faecalis obtained by insertion of transposon Tn916. Data indicate that this amino acid box brings about no reduction in penicillin sensitivity in the recipient E. faecalis strain, but, paradoxically, dramatically lowers the penicillin minimal inhibitory concentration caused by the native PBP5. We deduce that, although enterococcal PBP5s are a family of closely related proteins as far as biological function is concerned, differences exist in their three-dimensional structure that affect penicillin affinity.  相似文献   

8.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

9.
All clinical isolates of methicillin-resistant Staphylococcus aureus contain an extra penicillin binding protein (PBP) 2A in addition to four PBPs present in all staphylococcal strains. This extra PBP is thought to be a transpeptidase essential for the continued cell wall synthesis and growth in the presence of beta-lactam antibiotics. As an approach of testing this hypothesis we compared the muropeptide composition of cell walls of a highly methicillin-resistant S. aureus strain containing PBP2A and its isogenic Tn551 derivative with reduced methicillin resistance, which contained no PBP2A because of the insertional inactivation of the PBP2A gene. Purified cell walls were hydrolyzed into muropeptides which were subsequently resolved by reversed-phase high-performance liquid chromatography and identified by chemical and mass spectrometric analysis. The peptidoglycan composition of the two strains were identical. Both peptidoglycans were highly cross-linked mainly through pentaglycine cross-bridges, although other, chemically distinct peptide cross-bridges were also present including mono-, tri-, and tetraglycine; alanine; and alanyl-tetraglycine. Our experiments provided no experimental data for a unique transpeptidase activity associated with PBP2A.  相似文献   

10.
Methicillin-resistant clinical isolates of Staphylococcus aureus are intrinsically resistant to beta-lactam antibiotics in that the resistance mechanism is unrelated to the possession of beta-lactamases. We have demonstrated that a new, high-molecular-mass penicillin-binding protein (PBP) is present in these strains with a low affinity for beta-lactams and that its amount is regulated by the growth conditions. The new PBP from all strains that have been examined has an identical mobility on SDS gel electrophoresis and is the only PBP still present in an uncomplexed state with beta-lactams (and therefore the only functional PBP when these strains are grown in media containing concentrations of beta-lactam antibiotics sufficient to kill sensitive strains.  相似文献   

11.
Staphylococcus aureus has a strong adaptive capacity and thus acquired various types of resistance to antistaphylococcal agents. More than 90% of isolates produce a penicillinase. Oxacillin remains active against these strains, but hospital associated staphylococci and more recently community acquired staphylococci have developed crossed resistance between methicillin (MRSA), oxacillin and other beta-lactams by production of a penicillin binding protein (PBP) with low affinity for beta-lactams, PBP2a. The gene encoding PBP2a, mecA is carried by a chromosomal element which also contains other resistance genes to heavy metals and other antibiotics thus explaining the multiresistant profile of hospital associated MRSA. By contrast, community acquired MRSA (CA-MRSA) are only resistant to kanamycin, fusidic acid and tetracycline, in addition to methicillin. This profile is specific of the European CA-MRSA ST80 clone which also encodes for a very particular virulence factor, the Panton-Valentine leukocidin. Glycopeptides, vancomycin and teicoplanin, are alternatives to oxacillin in case of resistance or intolerance. Strains with decreased susceptibility to glycopeptides have been reported. Their detection is difficult but necessary because vancomycin MIC creep seems linked to poor outcome in patients.  相似文献   

12.
Penicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA). The mecA gene was cloned and expressed in Escherichia coli, and PBP2a was purified to homogeneity. The kinetic parameters for interactions of several beta-lactam antibiotics (penicillins, cephalosporins, and a carbapenem) and PBP2a were evaluated. The enzyme manifests resistance to covalent modification by beta-lactam antibiotics at the active site serine residue in two ways. First, the microscopic rate constant for acylation (k2) is attenuated by 3 to 4 orders of magnitude over the corresponding determinations for penicillin-sensitive penicillin-binding proteins. Second, the enzyme shows elevated dissociation constants (Kd) for the non-covalent pre-acylation complexes with the antibiotics, the formation of which ultimately would lead to enzyme acylation. The two factors working in concert effectively prevent enzyme acylation by the antibiotics in vivo, giving rise to drug resistance. Given the opportunity to form the acyl enzyme species in in vitro experiments, circular dichroism measurements revealed that the enzyme undergoes substantial conformational changes in the course of the process that would lead to enzyme acylation. The observed conformational changes are likely to be a hallmark for how this enzyme carries out its catalytic function in cross-linking the bacterial cell wall.  相似文献   

13.
Penicillin resistance in pneumococci is due to the appearance of high molecular-weight penicillin-binding proteins (PBPs) that have reduced affinity for the antibiotic. We have compared the PBX 2x genes (pbpX) of one penicillin-susceptible and five penicillin-resistant clinical isolates of Streptococcus pneumoniae isolated from various parts of the world. All of the resistant isolates contained a low-affinity form of PBP 2x. The 2 kb region of the two penicillin-susceptible isolates differed at only eight nucleotide sites (0.4%) and resulted in one single amino acid difference in PBP 2x. In contrast, the sequences of the PBP 2x genes from the resistant isolates differed overall from those of the susceptible isolates at between 7 and 18% of nucleotide sites and resulted in between 27 and 86 amino acid substitutions in PBP 2x. The altered PBP 2x genes consisted of regions that were similar to those of susceptible strains (less than 3% diverged), alternating with regions that were very different (18-23% diverged). The presence of highly diverged regions within the PBP 2x genes of the resistant isolates contrasts with the uniformity of the sequences of the amylomaltase genes from the same isolates, and with the uniformity of the PBP 2x genes in the two susceptible isolates. It suggests that the altered PBP 2x genes have arisen by localized interspecies recombinational events involving the PBP 2x genes of closely related streptococci, as has been suggested to occur for altered PBP 2b genes (Dowson et al., 1989b). The PBP 2x genes from the resistant isolates could transform the susceptible strain R6 to increased levels of resistance to beta-lactam antibiotics, indicating that the altered forms of PBP 2x in the resistant isolates contribute to their resistance to penicillin.  相似文献   

14.
Murein synthesized in ether-permeabilized cells of Escherichia coli deficient in individual penicillin-binding proteins (PBPs) and in the presence of certain beta-lactam antibiotics was analyzed by high-pressure liquid chromatography separation of the muramidase split products. PBP 1b was found to to be the major murein synthesizing activity that was poorly compensated for by PBP 1a. A PBP 2 mutant as well as mecillinam-inhibited cells showed increased activity in the formation of oligomeric muropeptides as well as UDP-muramylpeptidyl-linked muropeptides, the reaction products of transpeptidation, bypassing the lipid intermediate. In contrast, penicillin G and furazlocillin severely inhibited these reactions but stimulated normal dimer production. It is concluded that two distinct transpeptidases exist in E. coli: one, highly sensitive to penicillin G and furazlocillin, catalyzes the formation of hyper-cross-linked muropeptides, and a second one, quite resistant to these antibiotics, synthesizes muropeptide dimers.  相似文献   

15.
Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryl-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M(-1) s(-1) from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (d-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxypeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to beta-lactam antibiotics but did increase the resistance of the mutant to moenomycin.  相似文献   

16.
Abstract We examined the penicillin-binding proteins (PBPs) of certain field strains of Streptococcus suis , as well as those from laboratory variants having different degrees of resistance to penicillin. Results indicated that (i) S. suis possesses three distinct groups of PBPs, arbitrarily named here PBP 1, PBP 2, and PBP 3, with approximate molecular weights of 97, 82, and 45 kDa respectively; (ii) PBP profiles of field strains of S. suis having different MICs (≤ 0.03 to 16.0 μg/ml) were not uniform (PBP 2 being difficult to detect in strains whose MICs exceeded 0.10 μg/ml, and PBP 3 which exhibited shifts in molecular weight of approximately 5 kDa); (iii) laboratory variant PBPs 1 and 2 showed decreased affinity for penicillin as compared to the parent strain in antibiotic competition experiments, even though the PBP profiles of both were similar. We suggest that PBP modifications (altered molecular weight and/or decreased affinity for penicillin) are involved in the mechanism of resistance to penicillin by S. suis .  相似文献   

17.
The cytoplasmic membrane of Thiobacillus versutus was found to contain at least nine penicillin-binding proteins (PBPs) with apparent molecular weights as judged by sodium dodecyl sulphate polyacrylamide slab gel electrophoresis of 87000 (PBP1), 81000 (PBP2), 68000 (PBP3), 63000 (PBP4), 57000 (PBP5), 40000 (PBP6), 37000 (PBP70, 33000 (PBP8) and 31000 (PBP9). The PBP pattern of T. versutus was thus quite different from that of the Enterobacteria and the Pseudomonads. Also the properties of the PBPs of T. versutus such as affinity for various beta-lactam antibiotics, heat stability and release of bound penicillin were different from similar properties of Escherichia coli, Pseudomonas aeruginosa and other gram-negative bacteria.  相似文献   

18.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

19.
Penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae is one of the high-molecular-weight PBPs involved in the development of intrinsic beta-lactam resistance. Point mutations in the PBP 2x genes (pbpX) have now been characterized in five independent spontaneous laboratory mutants in order to identify protein regions which are important for interaction with beta-lactam antibiotics. All mutant genes contained two to four mutations resulting in amino acid substitutions within the penicillin-binding domain of PBP 2x, and none of the mutants carried an identical set of mutations. For one particular mutant, C606, carrying four mutations in pbpX, the mutations at positions 601 and 597 conferred first- and second-level resistance when introduced into the susceptible parent strain S. pneumoniae R6. However, the other two mutations, at amino acid positions 289 and 422, which were originally selected at the fifth and sixth isolation steps, did not contribute at all to resistance in similar experiments. This suggests that they are phenotypically expressed only in combination with mutations in other genes. Three PBP 2x regions were mutated in from two to all four mutants carrying a low-affinity PBP 2x. However, in a fifth mutant containing a PBP 2x with apparent zero affinity for beta-lactams, the three mutations in pbpX mapped at entirely different positions. This demonstrates that different mutational pathways exist for remodeling this PBP during resistance development.  相似文献   

20.
In a previous study, it was found that polyoxotungstates such as undecatungstosilicate (SiW11) greatly sensitized strains of methicillin-resistant Staphylococcus aureus (MRSA) to beta-lactams. In this report, the effects of SiW11 on several MRSA strains with unique resistant mechanisms were studied. SiW11 was still effective to MRSA mutants with higher beta-lactam resistance due to reduced cell-lytic activity. Since the antimicrobial effect of TOC-39 (a cephem antibiotic with strong affinity to penicillin-binding protein (PBP) 2') was not strongly enhanced in any case, it was confirmed that the sensitizing effect of SiW11 is due to reduced expression of PBP2'. However, the sensitizing effect of SiW11 was relatively weak in MRSA strains with lowered susceptibility to glycopeptide antibiotics. A certain resistant mechanism other than the mecA-PBP2' system worked in such a strain. Interestingly, an MRSA mutant with the Eagle-type resistance was dramatically sensitized. This result suggests that SiW11 has another site of action besides reducing the expression of PBP2'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号