首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arrest of 3T3 cells in G1 phase by low density lipoprotein   总被引:1,自引:0,他引:1  
Low density lipoprotein (LDL) and high density lipoprotein (HDL) were purified from normal human serum by KBr density gradient centrifugation and gel filtration through Sepharose 4B. LDL reversibly inhibited proliferation of Swiss/3T3 cells, whereas HDL had no inhibitory effect on cell growth. The LDL-induced inhibition was LDL-dose dependent and was reversed by the addition of mevalonate, a product of the reaction of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34). These data suggest that a specific reduction in the activity of HMG-CoA reductase produced by the addition of LDL is the main cause of the inhibition of cell proliferation. Studies of the effect of LDL on the cell cycle showed that it inhibited the entry of cells arrested in G0/G1 into the S phase but that it did not affect the transition of cells at the G1/S boundary into the M phase. The cell cycle of 3T3 is arrested solely in G1 by LDL.  相似文献   

2.
Adult rat hepatocytes multiply in primary cultures when incubated in arginine-free MX-83 medium supplemented with dialyzed fetal calf serum, insulin, glucagon, hydrocortisone, epidermal growth factor, and transferrin. In the absence of mitogens, the fraction of the cells engaged in DNA synthesis dropped sharply. However, cells initiated DNA synthesis in response to the mitogenic mixture indicating that hepatocyte proliferation is controlled by G1----S transition rates. In contrast, rat hepatoma line DTH-3, derived from Morris 7777 "minimal deviation" hepatoma, required only insulin for proliferation in chemically defined MX-83 medium. The lengths of their cell cycle phases varied with the growth rate. The phases of the growth cycle were proportionately shortened (expanded) when the growth rate was increased (decreased). It is concluded that DTH-3 hepatoma cells, which display a decreased growth factor requirement as compared with adult rat hepatocytes differ from normal hepatocytes by fundamental alterations in the mechanisms controlling the progression of the cell cycle.  相似文献   

3.
4.
We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-beta 1 overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-beta 1 induces anchorage-independent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-beta 1 fails to induce anchorage- independent growth). These results show that (a) adhesion and TGF-beta 1 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-beta 1 on anchorage- independent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-beta 1 requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-beta 1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage- independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence.  相似文献   

5.
Quiescent serum-starved 3T3 cells can be stimulated to initiate DNA synthesis after addition of conditioned media from spontaneously tumor-transformed 3T3 cells (3T6-cells) or from SV-40-transformed 3T3 cells (SV-3T3 cells). The conditioned media were found to stimulate both the chromosome cycle (i.e., DNA synthesis and cell division) and the growth cycle (i.e., cellular enlargement). Furthermore, addition of conditioned media to quiescent 3T3 cells increased the activity of HMG CoA reductase--an enzyme previously proposed to exercise some control on cell proliferation in 3T3 cells (Larsson and Zetterberg: J. Cell. Physiol. 129:99-102, 1986. The increased activity of HMG CoA reductase after treatment with tumor cell conditioned media was correlated to the stimulatory effects on DNA synthesis. By treating 3T3 cells stimulated to resume proliferation by addition of conditioned media with mevinolin (a competitive inhibitor of HMG CoA reductase) the activity of HMG CoA reductase as well as the DNA synthesis and cell division were efficiently inhibited. In contrast, HMG CoA activity was not coupled to the cellular enlargement. Therefore, it is proposed that one set of factors present in tumor cell conditioned media preferentially stimulates the chromosome cycle by increasing the HMG-CoA reductase activity, whereas another set of factors is responsible for growth in cell size. Both types of factors are required for balanced growth.  相似文献   

6.
7.
Clonal anergy is maintained independently of T cell proliferation   总被引:2,自引:0,他引:2  
Ag encounter in the absence of proliferation results in the establishment of T cell unresponsiveness, also known as T cell clonal anergy. Anergic T cells fail to proliferate upon restimulation because of the inability to produce IL-2 and to properly regulate the G(1) cell cycle checkpoint. Because optimal TCR and CD28 engagement can elicit IL-2-independent cell cycle progression, we investigated whether CD3/CD28-mediated activation of anergic T cells could overcome G(1) cell cycle block, drive T cell proliferation, and thus reverse clonal anergy. We show here that although antigenic stimulation fails to elicit G(1)-to-S transition, anti-CD3/CD28 mAbs allow proper cell cycle progression and proliferation of anergic T cells. However, CD3/CD28-mediated cell division does not restore Ag responsiveness. Our data instead indicate that reversal of clonal anergy specifically requires an IL-2-dependent, rapamycin-sensitive signal, which is delivered independently of cell proliferation. Thus, by tracing proliferation and Ag responsiveness of individual cells, we show that whereas both TCR/CD28 and IL-2-generated signals can drive T cell proliferation, only IL-2/IL-2R interaction regulates Ag responsiveness, indicating that proliferation and clonal anergy can be independently regulated.  相似文献   

8.
We investigated the effect of 2,4-D (2,4-dichlorophenoxyacetic acid) at concentrations of 1.5, 15, 30, and 60 nM on the growth of the main root of 3–7-d-old plants of Arabidopsis thaliana L. On the basis of measurements of the rate of root growth, lenght of fully elongated cells, and the number of cells in the meristem and elongation zone, we calculated the rates of cell proliferation and their transition to elongation, duration of cell cycle, and life span of cells in the meristem. At a concentration of 1.5 nM, 2,4-D did not affect these characteristics. At concentrations above 1.5 nM, 2,4-D noticeably retarded root growth, which was accounted for by a reduction in the length of cells that completed elongation, deceleration of cell proliferation and their transition to elongation, and prolongation of cell cycle and life span of the cells in the meristem. Thus, auxin decelerated root growth not only as a result of suppression of cell elongation but also at the higher concentrations via retardation of cell divisions in the meristem and their transition to elongation.  相似文献   

9.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

10.
Sonic hedgehog (Shh) signaling is important in the growth and differentiation of many cell types and recently has been reported to play a role in T cell development in the thymus. This prompted us to investigate whether or not Shh contributes to the clonal expansion of peripheral CD4(+) T cells. In this study, we demonstrate that Shh and other components of the signaling pathway patched, smoothened, and Gli1 (glioma-associated oncogene) are expressed in peripheral CD4(+) T cells. The addition of the biologically active amino-terminal Shh peptide had no effect on resting CD4(+) T cells, but significantly enhanced proliferation of anti-CD3/28 Ab-activated CD4(+) T cells. This was not due to antiapoptotic effects, but by promoting entry of T cells into the S-G(2) proliferative phase of the cell cycle. Neutralizing anti-Shh Ab reduced T cell proliferation by inhibiting cell transition into the S-G(2) phase, suggesting that endogenously produced Shh plays a physiological role in the clonal expansion of T cells. Furthermore, we have observed a significant up-regulation of Shh and Gli1 (glioma-associated oncogene) mRNA in activated CD4(+) T cells with or without addition of exogenous Shh, which corresponds with maximal CD4(+) T cell proliferation, whereas bcl-2 was only up-regulated in activated cells in the presence of Shh. Our findings suggest that endogenously produced Shh may play a role in sustaining normal CD4(+) T cell proliferation and exogenously added Shh enhances this response.  相似文献   

11.

Background

T cells are essential for the development of uveitis and other autoimmune diseases. After initial activation, CD4+ lymphocytes express the co-stimulatory molecule OX40 that plays an important role in T cell proliferation. Cyclin dependent kinase 2 (CdK2) plays a pivotal role in the cell cycle transition from G1 to S phase. In addition, recent research has implicated CdK2 in T cell activation. Thus, we sought to test the immunosuppressive effect of roscovitine, a potent CdK2 inhibitor, on CD4+ T cell activation, proliferation, and function.

Design and Methods

Mouse CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies. The expression of OX40, CD44, and CdK2 were analyzed by flow cytometry. In addition, cell cycle progression and apoptosis of control and roscovitine-treated T lymphocytes were measured by BrdU incorporation and annexin V assay, respectively. Furthermore, the immunoregulatory effect of roscovitine was evaluated in both ovalbumin-induced uveitis and experimental autoimmune uveitis (EAU) models.

Results

In this study, we found that T cell activation induced OX40 expression. Cell cycle analysis showed that more CD4+OX40+ cells entered S phase than OX40- T cells. Concurrently, CD4+OX40+ cells had a higher level of CdK2 expression. Roscovitine treatment blocked activated CD4+ cells from entering S phase. In addition, roscovitine not only reduced the viability of CD4+ lymphocytes but also suppressed T cell activation and cytokine production. Finally, roscovitine significantly attenuated the severity of T cell-dependent, OX40-enhanced uveitis.

Conclusion

These results implicate CdK2 in OX40-augmented T cell response and expansion. Furthermore, this study suggests that roscovitine is a novel, promising, therapeutic agent for treating T cell-mediated diseases such as uveitis.  相似文献   

12.
Toxoplasma gondii is an obligate intracellular parasite that causes severe disease in humans. It is able to infect all nucleated mammalian cells leading to lifelong persistence of the parasite in the host. Here, we studied the effect of T. gondii infection on host cell proliferation and explored the molecular mechanisms involved in host cell cycle progression. We found that T. gondii induced G1/S transition in host cells in the presence of UHRF1, followed by G2 arrest after cyclin B1 downregulation which is probably the major cause of the arrest. Other molecules at the G2/M checkpoint including p53, p21 and Cdk1 were normally regulated. Interestingly, while parasite proliferation was normal in cells that were in the G2 phase, it was suppressed in G1-arrested cells induced by UHRF1-siRNA, indicating the importance of the G2 phase via UHRF1-induced G1/S transition for T. gondii growth.  相似文献   

13.
Lectin- and antigen-induced proliferation of murine T cells consists of two major events, namely, a rapid induction of susceptibility to growth factors and a later-occurring, accessory cell-dependent production of T cell growth factors (TCGF). The mechanism by which interferon (IFN) inhibits T cell responses was studied accordingly. A decrease of Con A-induced proliferation was observed in the presence of increasing amounts of IFN. The reduced proliferative response in such cultures was found to be due to an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, the results show that IFN did not inhibit the early events in T cell triggering, because the acquisition of responsiveness of resting T cells to TCGF was unaltered in the presence of IFN, nor did it interfere with production of TCGF. In contrast, IFN was found to interfere with the TCGF-dependent T cell blast growth. Cytofluorometric analysis of the proliferative phase revealed that IFN exerts its effect on T cells, which have entered the proliferative cycle, by a postmitotic accumulation in G0/G1, thus reducing the proliferating population. The results demonstrate that IFN primarily affects the later phase of proliferative activity after T cell triggering, leaving the helper cell functions untouched.  相似文献   

14.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by activation and proliferation of autoreactive T cells and B cells. We examined changes in cell cycle progression of T cells from MRL/lpr mice with or without allogenic bone marrow mesenchymal stem cells (BMMSCs) treatment and analyzed the expression of cell cycle associated proteins. In addition, the Akt/GSK3β protein kinase cascade was studied. We demonstrated that high-dose MSCs transplantation effectively ameliorated disease activity in MRL/lpr mice. BMMSCs treatment inhibited G1/S transition of the abnormal lupus T lymphocytes. Moreover, it increased the expression of p21(WAF1/CIP1) and p27(Kip1) and decreased the expression of CDK2. Furthermore, high-dose MSCs inhibited abnormal activation of the Akt/GSK3β signaling pathway of T cells from MRL/lpr mice. Our results suggest that high-dose BMMSCs transplantation successfully treated MRL/lpr lupus mice by inhibiting abnormal activation of Akt/GSK3β signaling pathway of T cells.  相似文献   

15.
Necl-5/Tage4/poliovirus receptor/CD155 has been shown to be the poliovirus receptor and to be up-regulated in rodent and human carcinoma. We have found previously that mouse Necl-5 regulates cell motility. We show here that mouse Necl-5 is furthermore involved in the regulation of cell proliferation. Studies using a specific antibody against Necl-5 and a dominant negative mutant of Necl-5 revealed that Necl-5 enhanced the serum-induced proliferation of NIH3T3, Swiss3T3, and mouse embryonic fibroblast cells. Necl-5 enhanced the serum-induced activation of the Ras-Raf-MEK-ERK signaling, up-regulated cyclins D2 and E, and down-regulated p27(Kip1), eventually shortening the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 similarly enhanced the platelet-derived growth factor-induced activation of the Ras-Raf-MEK-ERK signaling and shortened the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 acted downstream of the platelet-derived growth factor receptor and upstream of Ras. Moreover, up-regulated Necl-5 was involved at least partly in the enhanced proliferation of transformed cells including NIH3T3 cells transformed by an oncogenic Ras or v-Src. These results indicate that Necl-5 plays roles not only in cell motility but also in cell proliferation.  相似文献   

16.
Probabilistic models of the cell cycle maintain that cell generation time is a random variable given by some distribution function, and that the probability of cell division per unit time is a function only of cell age (and not, for instance, of cell size). Given the probability density, f(t), for time spent in the random compartment of the cell cycle, we derive a recursion relation for n(x), the probability density for cell size at birth in a sample of cells in generation n. For the case of exponential growth of cells, the recursion relation has no steady-state solution. For the case of linear cell growth, we show that there exists a unique, globally asymptotically stable, steady-state birth size distribution, *(x). For the special case of the transition probability model, we display *(x) explicitly.This work was supported by the National Science Foundation under grants MCS8301104 (to J.J.T.) and MCS8300559 (to K.B.H.), and by the National Institutes of Health under grant GM27629 (to J.J.T.).  相似文献   

17.
Vpr, one of the accessory molecules of HIV-1, has been demonstrated to arrest the cell cycle at the G2 phase. This Vpr-mediated cell cycle arrest is implicated to have an important role in the viral life cycle. In the present study, we quantitate the extent of Vpr-mediated cell cycle arrest with the use of a bicistronic vector consisting of a vpr gene and a green fluorescence protein sequence. Using this system, we examined the effect of several Vprs on cell cycle progression and growth of cells from different species quantitatively. We found that Vpr from the T-cell line-adapted HIV-1SF2 strain (Vpr2) could not significantly induce G2 arrest in HeLa cells but was able to induce it in 293T cells. However, strong inhibition of cell proliferation in HeLa cells as well as in 293T cells was observed by Vpr2. This ability of Vpr2 to inhibit cell proliferation without G2 arrest was also observed when expressed in monkey cell line. Analyses of chimeric Vprs revealed that this species-non-specific growth inhibitory activity of Vpr was not mediated solely by the C-terminal region of Vpr. These results indicated that the growth inhibitory activity of Vpr is independent of its G2 arresting activity. In addition, the species-non-specific nature of this activity suggests that Vpr has a novel mechanism to retard cell proliferation by influencing basic cellular functions.  相似文献   

18.
The proliferation of Chinese hamster fibroblasts (CHF) and NIH 3T3 cells was studied at different flow rates immediately above the cells. It is shown that there is a limiting density of saturation of the perfused culture that accounts for 1.7 x 10(6) - 2.0 x 10(6) cells/cm2 for NIH 3T3 cells, and for 6 x 10(6) - 7 x 10(6) cells/cm2 for CHF. The growth curves and the distribution of cells with respect to the phases of the cell cycle during cultivation with and without perfusion are presented. Based on the results obtained it is assumed that the limit of saturation density of perfused CHF culture is due to the mass transfer of the growth-inhibiting metabolites inside the multilayer structures. The assumption seems to hold true for NIH 3T3 cells, too, even though the multilayer character of growth of this culture is less pronounced than in CHF.  相似文献   

19.
T cell growth without serum   总被引:5,自引:0,他引:5  
Most in vitro T cell proliferation experiments are performed by using serum-supplemented medium, yet the actual contributions of serum components to cell cycle progression remain ill-defined, thus complicating attempts to fully define requirements for cell division. By utilizing a functional separation between T cell receptor-triggered "competence" and IL 2-promoted "progression" to independently assess serum requirements during each cell cycle stage, it was shown that serum serves an essential, active role only during the early events of the competence phase (G0-G1 transition) of T cell activation. Serum is required for optimal IL 2 production and the cell surface expression of IL 2 receptors after the stimulation of the T3/Ti antigen receptor complex. In contrast, serum does not function actively during IL 2-mediated progression through the G1 phase of the cycle. Serum proteins serve only a passive role at this stage, preventing the adsorption of IL 2. This same effect can be provided by any number of proteins including IL 2 itself, or even a high cell concentration. Supplementation of serum-free T cell cultures solely with IL 2 and transferrin is sufficient for maximal T cell proliferation, although the time of the peak response is delayed owing to a suboptimal rate of IL 2 receptor expression. Accordingly, the realization that serum is only necessary for the earliest stage of T cell activation will now enable studies designed to identify the critical individual serum components and to define their mechanism of action.  相似文献   

20.
Previous work had suggested that recombinant CCN3 was partially inhibiting cell proliferation. Here we show that native CCN3 protein secreted into the conditioned medium of glioma transfected cells indeed induces a reduction in cell proliferation. Large amounts of CCN3 are shown to accumulate both cytoplasmically and extracellularly as cells reach high density, therefore highlighting new aspects on how cell growth may be regulated by CCN proteins. Evidence is presented establishing that the amount of CCN3 secreted into cell culture medium is regulated by post-translational proteolysis. As a consequence, the production of CCN3 varies throughout the cell cycle and CCN3 accumulates at the G2/M transition of the cycle. We also show that CCN3-induced inhibition of cell growth can be partially reversed by specific antibodies raised against a C-terminal peptide of CCN3. The use of several clones expressing various portions of CCN3 established that the CT module of CCN3 is sufficient to induce cell growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号