首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mannose-binding lectin from snowdrop (Galanthus nivalis agglutinin: GNA), when fed to insects, binds to the gut epithelium and passes into the haemolymph. The potential for GNA to act as a carrier protein to deliver an insect neuropeptide, Manduca sexta allatostatin (Manse-AS), to the haemolymph of lepidopteran larvae has been examined by expressing a GNA/Manse-AS fusion protein (FP) in Escherichia coli, and feeding purified FP to larvae of the tomato moth Lacanobia oleracea. FP, administered at 1.5 or 0.5% of dietary proteins, was found to strongly inhibit feeding and prevent growth of fifth stadium larvae, whereas neither GNA nor Manse-AS alone, nor a mixture of GNA and Manse-AS in control treatments, had deleterious effects at similar levels. Elevated levels of material reacting with anti-Manse-AS antibodies were detected in the haemolymph of insects fed diets containing FP, suggesting that transport of the peptide had occurred. Evidence for the delivery of intact FP to the haemolymph was provided by the co-elution of Manse-AS-like immunoreactivity with standard FP after size exclusion chromatography of haemolymph from FP-fed larvae. GNA/Manse-AS and similar fusion proteins offer a novel and effective strategy for delivering insect neuropeptides by oral administration, which could be used in conjunction with expression in transgenic plants to give crop protection in the field.  相似文献   

2.
Primary exposure to Trichinella spiralis in the rat, while immunizing against reinfection, induces changes in the carbohydrate structure of intestinal brush border membranes. Immunity is expressed in heightened resistance to mucosal invasion by L1 larvae, and the change in structure is evident in reduced membrane binding of the lectin, wheat germ agglutinin. The possibility that altered membrane composition is a requisite for expression of immunity was hypothesized and this was evaluated by correlating the maximum, specific binding of wheat germ agglutinin by isolated brush border membranes with (1) the expression of immunity acquired passively through serum transfer, and (2) the loss of immunity acquired from serial infections terminated in the intestinal phase. The hypothesis was further evaluated by determining whether the change in membrane structure represents a stimulus-specific response. We observed that (1) passively acquired immunity was not associated with a reduction in lectin binding and (2) short-term exposure to the intestinal stages of T. spiralis led to a reduction in lectin binding that was detectable at a time when rats were incapable of resisting reinfection. The change in lectin binding associated with trichinosis also accompanied infection with Nippostrongylus brasiliensis. Results uniformly support the conclusion that immunity to T. spiralis is independent of brush border membrane changes reflected in reduced binding of wheat germ agglutinin.  相似文献   

3.
The effects of the transgene proteins Galanthus nivalis agglutinin (GNA) and cowpea trypsin inhibitor (CpTI) on the predatory stinkbug Podisus maculiventris were studied under laboratory conditions. When the P. maculiventris were provided with tomato moth (L. oleracea) larvae injected with either GNA or CpTI at a dose of 10 μg day-1, growth was significantly reduced and, as a consequence, female adult weight was also significantly reduced. For GNA-fed and CpTI-fed P. maculiventris, this weight reduction was 11.3 and 16.6%, respectively. Males, however, were not significantly affected. Female bugs that had not been exposed to the transgene proteins as nymphs, however, showed no reduction in fecundity when these adults were provided with prey injected with either GNA or CpTI at this same dose. When provided with hosts that had been reared on transgenic plants expressing either GNA or CpTI, no effects on the survival of nymphs were observed and only small, largely non-significant, reductions in weights were recorded throughout preadult development. Male nymphs fed on the GNA-fed prey did, however, exhibit a significant lengthening of preadult development of 0.8 days. The subsequent adults showed significantly reduced egg production for the GNA treatment. The results indicate that P. maculiventris may suffer some indirect adverse effects from foraging for prey in crops expressing either GNA or CpTI, due to prey being of inferior quality, rather than to direct toxicity of the transgene products themselves.  相似文献   

4.
Brush border membranes isolated from the proximal and distal portions of the rat small intestine were examined to see whether qualitative differences exist in their glycoprotein constituents. After SDS-polyacrylamide gel electrophoresis distinct differences were observed, indicating that the protein and glycoprotein profiles of the distal intestine are less complex. A competitive radioassay of lectin receptors revealed that there are significantly more wheat germ agglutinin and succinylated wheat germ agglutinin receptors present on brush border membranes from proximal intestine as compared to distal intestine. However, binding of Ricinus communis agglutinin I to brush border membranes of distal intestine was 2-times higher than that of proximal intestine. These segmental differences were also reflected in the binding patterns of individual brush border membrane hydrolases to wheat germ agglutinin and R. communis agglutinin I. Carbohydrate analysis demonstrated that the overall sugar content of brush border membranes is higher in distal intestine, with more galactose and sialic acid residues. No difference was found in the content of N-acetylglucosamine between the two segments. When brush border membranes from both segments were used as acceptors for galactosyltransferase, those from proximal intestine were better acceptors. Neuraminidase treatment significantly enhanced galactose oxidase/sodium borotritide labeling of brush border membranes from distal intestine and altered the electrophoretic mobility of dipeptidyl aminopeptidase IV and aminopeptidase N. No significant changes in labeling or enzyme electrophoretic mobility were noted in brush border membranes from proximal intestine after neuraminidase treatment. These studies indicate that the glycoproteins from brush border membranes of proximal and distal intestine are qualitatively different and that the glycoproteins from distal intestine may have more completed oligosaccharide side chains.  相似文献   

5.
The enterocyte brush border of the small intestine is a highly specialized membrane designed to function both as a high capacity digestive/absorptive surface of dietary nutrients and a permeability barrier towards lumenal pathogens. It is characterized by an unusually high content of glycolipids (∼30% of the total microvillar membrane lipid), enabling the formation of liquid ordered microdomains, better known as lipid rafts. The glycolipid rafts are stabilized by galectin-4, a 36 kDa divalent lectin that cross-links galactosyl (and other carbohydrate) residues present on membrane lipids and several brush border proteins, including some of the major hydrolases. These supramolecular complexes are further stabilized by intelectin, a 35 kDa trimeric lectin that also functions as an intestinal lactoferrin receptor. As a result, brush border hydrolases, otherwise sensitive to pancreatic proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry to the organism.  相似文献   

6.
The pig small intestinal brush border is a glycoprotein- and glycolipid-rich membrane that functions as a digestive/absorptive surface for dietary nutrients as well as a permeability barrier for pathogens. The present work was performed to identify carbohydrate-binding (lectinlike) proteins associated with the brush border. Chromatography on lactose-agarose was used to isolate such proteins, and their localization was studied biochemically and by immunofluorescence microscopy and immunogold electron microscopy. IgG and IgM were the two major proteins isolated, indicating that naturally occurring anti-glycosyl antibodies are among the major lectinlike proteins in the gut. IgG and IgM as well as IgA were localized to the enterocyte brush border, and a brief lactose wash partially released all three immunoglobulins from the membrane, indicating that anti-glycosyl antibodies constitute a major part of the immunoglobulins at the lumenal surface of the gut. The antibodies were associated with lipid rafts at the brush border, and they frequently (52%) coclustered with the raft marker galectin 4. A lactose wash increased the susceptibility of the brush border toward lectin peanut agglutin and cholera toxin B, suggesting that anti-glycosyl antibodies compete with other carbohydrate-binding proteins at the lumenal surface of the gut. Thus anti-glycosyl antibodies constitute a major group of proteins associated with the enterocyte brush border membrane. We propose they function by protecting the lipid raft microdomains of the brush border against pathogens.  相似文献   

7.
Brush cells are specialised epithelial cells that are assumed to represent chemoreceptors of the digestive tract. They comprise a small population of the epithelial cells lining the intestine, possess a unique ultrastructure and, in many aspects, resemble the receptor cells of taste buds. To characterise glycoconjugates possibly involved in a sensory function, we investigated brush cells in the small intestine of three species using lectin histochemistry in confocal light and thin-section electron microscopy. Brush cells of rats were selectively labelled by the sialic acid-specific lectin Maackia amurensis agglutinin, those of guinea-pigs by the D-galactose-specific lectin Bandeiraea simplicifolia agglutinin, isolectin B4 and those of mice by the L-fucose-specific lectin Ulex europaeus agglutinin lectin I. Lectin binding sites were consistently located in the glycocalyx of the apical membrane and in that of cytoplasmic vesicles. In vivo lectin labelling revealed that the glycoconjugates of the apical membrane are accessible under physiological conditions, that brush cells do not endocytose and that they probably possess a high membrane turnover rate. The results show that specialisations exist in the composition of glycoconjugates forming the glycocalyx of brush cells in all species investigated. The presence of brush cell-specific glycoconjugates would be in accordance with the current hypothesis of a receptive function of brush cells. Differences in the specific glycosylation patterns among rats, guinea-pigs and mice indicate that species-specific adaptations exist.  相似文献   

8.
Plant populations at high elevation face extreme climatic conditions and resource limitations. The existence of distylous species at different elevations can help us investigate their adaptation to high altitudes, the evolution of their morphological characteristics, as well as their responses to limited resources. Here, 17 populations of Primula nivalis at different elevations were evaluated regarding variations in plant morphological characteristics, biomass allocation, and morphological plasticity in a heterogeneous environment. Our results demonstrate that heterogeneous environments can affect plant morphological characteristics and resource allocation in each sexual morph of these plants. Moreover, environmental variations reduced morphological plasticity in the two plant morphs, and the plasticity of long style (LS) plants was greater than that of short style (SS) plants. There were significant negative correlations between morphological characteristics and elevation, rainfall, temperature, and sunshine, and these are the main variables that affect morphological characteristics and resource allocation of both morphs of P. nivalis plants in heterogeneous environments. The morphological characteristics of P. nivalis plants transplanted from high to lower elevations were not significantly different in either population. LS plants had greater morphological plasticity and adaptability in heterogeneous environments than SS plants. Elevational gradients and heterogeneous environments differentiated both morphs of P. nivalis plants with regards to morphology as well as adaptations. LS plants showed a higher level of adaptability than SS plants.  相似文献   

9.
The mucin composition of the rat distal colonic pre-epithelial mucus layer (PML) was studied by lectin histochemistry in conventional (CV), and germ-free (GF) rats to define effects exerted by the gut flora. No peanut agglutinin (PNA) binding was observed in the PML of GF rats, while the PML of their CV counterparts showed a considerable PNA linkage, indicating terminal Gal-beta1,3-GalNAc residues. Soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) stained the PML mucins in CV and in GF rats, indicating terminal GalNAc moieties. A quantitative difference in the Limax flavus agglutinin (LFA) binding capacity was found between CV and GF rats, indicating terminal sialic acid moieties: the staining intensity of bound LFA/ FiTC was higher in CV rats than in GF rats. No linkage of Datura stramonium agglutinin (DSA) and of wheat germ agglutinin (WGA) was found in the PML of GF rats, indicating the absence of terminal GlcNAc, while in CV rats, a clearly marked border was visible next to the luminal content as a "nipple edge" when stained with DSA or WGA. Canavalia ensiformis agglutinin (ConA), indicative for branched mannose, stained PML mucins and goblet cell mucins of GF rat distal colon. In CV rats, both locations were free of ConA binding sites. These results suggest degrading effects, exerted by the gut flora on the rat colonic pre-epithelial mucus layer.  相似文献   

10.
Rice brown planthoppers (Nilaparvata lugens) were fed on artificial diet containing snowdrop lectin (Galanthus nivalis agglutinin; GNA), which has been shown to be toxic towards this insect pest. In addition to decreasing survival, the lectin affected development, reducing the growth rate of nymphs by approximately 50% when present at a concentration of 5.3&mgr;M. Immunolocalisation studies showed that lectin binding was concentrated on the luminal surface of the midgut epithelial cells within the planthopper, suggesting that GNA binds to cell surface carbohydrate moieties in the gut. Immunolabelling at a lower level was also observed in the fat bodies, the ovarioles, and throughout the haemolymph. These observations suggest that GNA is able to cross the midgut epithelial barrier, and pass into the insect's circulatory system, resulting in a systemic toxic effect. Electron microscope studies showed morphological changes in the midgut region of planthoppers fed on a toxic dose of GNA, with disruption of the microvilli brush border region. No significant proteolytic degradation of GNA was observed either in the gut or honeydew of planthoppers fed on lectin-containing diet. The presence of glycoproteins which bind GNA in the gut of the brown planthopper was confirmed using digoxigen-labeled lectins to probe blots of extracted gut polypeptides.  相似文献   

11.
Lectins are non-immunoglobulin carbohydrate-binding proteins without enzymatic activity towards the bound carbohydrates. Many lectins of e.g. plants or fungi have been suggested to act as toxins to defend the host against predators and parasites. We have previously shown that the Coprinopsis cinerea lectin 2 (CCL2), which binds to α1,3-fucosylated N-glycan cores, is toxic to Caenorhabditis elegans and results in developmental delay and premature death. In this study, we investigated the underlying toxicity phenotype at the cellular level by electron and confocal microscopy. We found that CCL2 directly binds to the intestinal apical surface and leads to a highly damaged brush border with loss of microvilli, actin filament depolymerization, and invaginations of the intestinal apical plasma membrane through gaps in the terminal web. We excluded several possible toxicity mechanisms such as internalization and pore-formation, suggesting that CCL2 acts directly on intestinal apical plasma membrane or glycocalyx proteins. A genetic screen for C. elegans mutants resistant to CCL2 generated over a dozen new alleles in bre 1, ger 1, and fut 1, three genes required for the synthesis of the sugar moiety recognized by CCL2. CCL2-induced intestinal brush border defects in C. elegans are similar to the damage observed previously in rats after feeding the dietary lectins wheat germ agglutinin or concanavalin A. The evolutionary conserved reaction of the brush border between mammals and nematodes might allow C. elegans to be exploited as model organism for the study of dietary lectin-induced intestinal pathology in mammals.  相似文献   

12.
A competitive binding assay has been developed to determine how modifications to the B subunit of cholera toxin affect the binding affinity of the subunit for an ileal brush border membrane surface. The Ricinus communis120 agglutinin (RCA120) specifically binds to terminal beta-D-galactosyl residues such as those found in oligosaccharide side chains of glycoproteins and ganglioside GM1. Conditions were designed to produce binding competition between the B subunit of cholera toxin and the RCA120 agglutinin. Displacement of RCA120 from brush border surfaces was proportional to the concentration of B subunit added. This assay was used to study the effect of modification of B subunit on competitive binding affinity for the ileal brush border surface. The B subunit of cholera toxin was modified by coupling an average of five sulfhydryl groups to each B subunit molecule and by reaction of the SH-modified B subunit with liposomes containing a surface maleimide group attached to phosphatidylethanolamine. SH-modified B subunit was approximately 200-fold more effective than native B subunit in displacing lectin from brush border surfaces in the competitive binding assay. The enhanced binding activity was retained on covalent attachment of the modified B subunit to the liposome surface. We conclude that the B subunit of cholera toxin may be a useful targeting agent for directing liposomes to cell surfaces that contain a ganglioside GM1 ligand.  相似文献   

13.
The mannose-specific snowdrop lectin (Galanthus nivalis agglutinin: GNA), when fed to insects, binds to the gut epithelium and passes into the haemolymph. The ability of GNA to act as a carrier protein to deliver an insecticidal spider venom neurotoxin (Segestria florentina toxin 1: SFI1) to the haemolymph of lepidopteran larvae was investigated. Constructs encoding SFI1 and an SFI1/GNA fusion protein were expressed in Pichia pastoris. The insecticidal activity of purified recombinant proteins on injection was found to be comparable to published values for SfI1 purified from spider venom [Toxicon 40 (2002) 125]. Whereas neither GNA nor SFI1 alone showed acute toxicity when fed to larvae of tomato moth (Lacanobia oleracea), feeding SFI1/GNA fusion at 2.5% of dietary proteins was insecticidal to first stadium larvae, causing 100% mortality after 6 days. The protein also showed a significant, dose dependent, toxicity towards fourth and fifth stadium larvae, with growth reduced by up to approximately 90% over a 4-day assay period compared to controls. Delivery of intact SFI1/GNA to the haemolymph in these insects was shown by western blotting; haemolymph samples from fusion-fed larvae contained a GNA-immunoreactive protein of the same molecular weight as the SFI1/GNA fusion. SFI1/GNA and similar fusion proteins offer a novel and effective approach for delivering haemolymph active toxins by oral administration, which could be used in crop protection by expression in transgenic plants.  相似文献   

14.
Intelectin is a mammalian Ca2+-dependent, D-galactosyl-specific lectin expressed in Paneth and goblet cells of the small intestine and proposed to serve a protective role in the innate immune response to parasite infection. In addition, it is structurally identical to the intestinal lactoferrin receptor known to reside in the enterocyte brush border. To clarify this apparent discrepancy with regard to localization, the aim of this work was to study the cellular and subcellular distribution of small intestinal intelectin by immunofluorescence and immunogold electron microscopy. Secretory granules of lysozyme-positive Paneth cells in the bottom of the crypts as well as goblet cells along the crypt-villus axis were intensively labeled with intelectin antibodies, but quantitatively, the major site of intelectin deposition was the enterocyte brush border. This membrane is organized in stable glycolipid-based lipid raft microdomains, and like the divalent lectin galectin-4, intelectin was enriched in microvillar "superrafts", i.e., membranes that resist solubilization with Triton X-100 at 37 degrees C. This strategic localization suggests that the trimeric intelectin, like galectin-4, serves as an organizer and stabilizer of the brush border membrane, preventing loss of digestive enzymes to the gut lumen and protecting the glycolipid microdomains from pathogens.  相似文献   

15.
An experimental model was designed to analyze the effect of fetal gut mesenchyme on the cytodifferentiation of crypt cells and of embryonic progenitor cells. The cells used were the rat intestinal crypt cell line, IEC-17, and primary cell cultures prepared form isolated 14-day-old fetal intestinal endoderm (EC). Both cultures prepared from isolated 14-day-old fetal rat intestinal endoderm (EC). Both types of cells were associated with 14-day-old fetal rat gut mesenchyme (Rm) and grafted under the kidney capsule of adult rats. Seventy percent of the Rm/EC and ten percent of the Rm/IEC recombinants, recovered after 9 days, exhibited well-vascularized structures in which the mesenchyme had induced morphogenesis of the cells into a villus epithelium. The four main intestinal epithelial cell types, absorptive, goblet, endocrine, and Paneth cells, were identified using electron microscopy. Biochemical determinations of enzyme activities associated with brush border membranes revealed that alkaline phosphatase, lactase, sucrase, and maltase were expressed in both types of associations. These results were confirmed by immunofluorescence staining using monoclonal antibodies to brush border enzymes. Both enzyme assays and immunocytochemistry showed that the amount of enzymes present in the brush border membrane of Rm/IEC grafts was in general lower than that of the Rm/EC recombinants. The results indicate that fetal rat gut mesenchyme enables morphogenesis and cytodifferentiation of both crypt and embryonic progenitor cells.  相似文献   

16.
An analytical assay is presented for the determination of the enantiomeric composition of galanthamine and related synthetic and natural compounds. (−)-Galanthamine is isolated from Galanthus nivalis and is used in this optical pure form in the therapy of Alzheimer’s disease. Recent efforts for a total synthesis of unichiral (−)-galanthamine is connected with the need for a fast and reliable assay for the determination of the optical purity of the end product, as well as for optimizing and controlling the final steps in total synthesis particularly the asymmetric transformation of narwedine. In this paper the enantiomeric resolution of these compounds is reported employing a capillary electrophoretic system with β-cyclodextrin derived chiral selectors. With the proposed system a number of galanthamine and narwedine derived analogous compounds could be separated, including 1-bromo- and N-alkyl-substituted compounds.  相似文献   

17.
CryIIA is an effective insecticidal delta-endotoxin produced by several strains of Bacillus thuringiensis. Unlike CryI and CryIIIA-toxins that demonstrate some degree of saturable binding on the brush border of susceptible insects, neither saturable binding nor a saturable binding component was found for CryIIA on the midgut brush border of Helicoverpa zea. CryIIA did not dilute and block CryIA(c) binding, however, CryIA(c) effectively diluted CryIIA and stopped the initial binding of CryIIA to the brush border. These observations suggest that CryIIA and CryIA(c) toxins share a common component for binding on the midgut brush border. CryIIA formed voltage-dependent and not highly cation-selective channels in planar lipid bilayers unlike CryIA(c) and CryIIIA. Both CryIA(c) and CryIIA were stable in the digestive fluids of H. zea, but CryIIA was significantly less soluble than CryIA(c). Despite this difference in solubility, CryIIA arrested the feeding of third instar H. zea as rapidly as did CryIA(c), however, the onset of acute morbidity was delayed for CryIIA. Differences in solubility, binding, and ion channels formed by CryIIA toxin, resulted in reduced bioactivity against H. zea when compared with CryIA(c) but represent a unique mode of action among the delta endotoxins.  相似文献   

18.
Pisum sativum agglutinin has been shown to act as a feeding inhibitor for various insect pests belonging to different orders: Lepidoptera, Coleoptera and Hemiptera. In the present study, its insecticidal activity was assessed through monitoring the growth and development of a dipteran pest Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Pea lectin, P. sativum agglutinin (PSA) was purified by single step affinity chromatography on a Sephadex G‐100 and the purification was monitored through hemagglutination activity and SDS‐PAGE. Insect feeding assays were conducted to determine the effect of pea lectin against first and second instar larvae of melon fruit fly B. cucurbitae. Lectin was incorporated in an artificial diet at a varied range of concentrations, 12.5, 25, 50, 100, 200 and 400 μg/mL. The lectin showed highly significant antimetabolic effects in both first and second instars. Time taken for pupation and development as well as percentage pupation and percentage adult emergence were adversely affected. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), five oxidoreductases (superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, O‐demethylase) and one group transfer enzyme (glutathione‐S‐transferases) was also assessed in second instar larvae fed on lectin treated diet at 100 μg/mL concentration. The P. sativum lectin significantly and deleteriously influenced the activity of all these enzymes at all exposure intervals.  相似文献   

19.
When fed in semi-artificial diet in short- and long-term bioassays, the lectins from snowdrop (Galanthus nivalis; GNA) and jackbean (Canavalia ensiformis; Con A) affected the activities of soluble and brush border membrane (BBM) enzymes in the midgut of Lacanobia oleracea larvae. In the short term both lectins increased gut protein levels and BBM aminopeptidase activity. The lectins also increased trypsin activity, both in the gut (Con A) and in the faeces (GNA). GNA also increased the activity of alpha-glucosidase, but neither lectin had a significant effect on alkaline phosphatase activity. Trypsin mRNA levels were similar in lectin-fed and control larvae in the short term, showing that there is no direct effect on expression of the encoding genes. Larvae chronically exposed to GNA and Con A showed reductions in weight of 50-60%, and exhibited a significant reduction in alpha-glucosidase activity, but little change in other enzyme activities. Con A bound to many BBM and peritrophic matrix (PM) proteins in vitro, whereas GNA showed more specific binding, with strongest binding to a 94kDa uncharacterised BBM protein. Both lectins accumulated in gut tissues of insects after chronic exposure in vivo, but Con A was present at higher levels than GNA.  相似文献   

20.
Red kidney bean, Phaseolus vulgaris, contains a lectin phytohemagglutinin (PHA) with toxicity towards higher animals. PHA exists in the isoforms PHA-E and PHA-L, which agglutinate erythrocytes and lymphocytes, respectively. Lacanobia oleracea larvae were reared from hatch on artificial diets containing PHA-E or PHA-L at 2% (w/w) dietary protein, and on transgenic Arabidopsis plants expressing either lectin at 0.4-0.6% of total soluble proteins. In artificial diet bioassays neither lectin affected larval survival, development, growth nor consumption. In transgenic plant bioassays both PHA-E and PHA-L promoted larval growth and development. This effect was greatest for PHA-E. Mean larval biomass of insects fed on plants expressing PHA-E was significantly greater (up to two-fold) than controls during the final two instars and the insects developed at a significantly greater rate so that after 26 days 83% of PHA-E exposed insects were in the final instar compared to 44% for control insects. PHA-E and PHA-L were detected by Western blotting in haemolymph, sampled from insects fed diets or plant material containing the lectins. However, despite the demonstrated potential for both isolectins to bind to gut glycopolypeptides in vitro neither was found to accumulate in vivo in the guts of exposed insects. Since lectin binding to gut polypeptides is thought to be necessary for insecticidal activity the failure of PHA-E and PHA-L to bind in vivo may account for their lack of toxicity to L. oleracea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号