首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have constructed a conditional null mutant Candida albicans strain for the UBI3 gene which encodes a ubiquitin fusion protein involved in ribosome biogenesis. A one-step gene disruption procedure, using the plasmid pCaDis, was designed to place the second copy of the UBI3 gene under the control of the tightly regulated MET3 promoter in a C. albicans heterozygous strain (UBI3/Deltaubi3::hisG), previously isolated in the first step of the ura-blaster protocol. Analysis of the conditional null mutant in repressing and inducing conditions indicates that UBI3 is an essential gene whose expression is required for growth of C. albicans.  相似文献   

2.
Abstract A gene encoding a type I topoisomerase (TOP1) was isolated from Candida albicans , sequenced, and expressed in Saccharomyces cerevisiae . The TOP1 gene was identified from a C. albicans genomic library by hybridization with the product of a polymerase chain reaction with degenerate primer sets encoding regions conserved in other TOP1 genes. A clone containing an open reading frame of 2463 bp and predicted to encode a protein of 778 amino acids with sequence similarity to eukaryotic type I topoisomerases was identified. The C. albicans TOP1 gene restored camptothecin sensitivity and increased the topoisomerase activity in S. cerevisiae , indicating that the DNA fragment encodes a functional C. albicans topoisomerase I.  相似文献   

3.
Abstract A variety of Saccharomyces cerevisiae genes e.g. HIS3, LEU2, TRP1, URA3 , are expressed in Escherichia coli and have been isolated by complementation of mutations in the corresponding E. coli genes [1]. The LEU2 gene was one of the first S. cerevisiae genes to be isolated in this way [2], and its isolation led to the development of transformation systems for S. cerevisiae [3,4]. The leuB gene in E. coli [5] and the LEU2 gene in S. cerevisiae [6] both code for 3-isopropylmalate dehydrogenase (3-IMDH; EC 1.1.1.85) which is essential for the biosynthesis of leucine in both organisms. This paper describes the cloning of a fragment of C. albicans DNA carrying the gene for 3-IMDH which will be useful in the development of transformation methods in C. albicans .  相似文献   

4.
A site-directed mutagenesis of the GFA1 gene encoding Candida albicans glucosamine-6-phosphate (GlcN-6-P) synthase afforded its GFA1S208A version. A product of the modified gene, lacking the putative phosphorylation site for protein kinase A (PKA), exhibited all the basic properties identical to those of the wild-type enzyme but was no longer a substrate for PKA. Comparison of the C. albicans Deltagfa1/GFA1 and Deltagfa1/GFA1S208A cells, grown under conditions stimulating yeast-to-mycelia transformation, revealed that the latter demonstrated lower GlcN-6-P synthase specific activity, decreased chitin content and formed much fewer mycelial forms. All these findings, as well as the observed effects of specific inhibitors of protein kinases, suggest that a loss of the possibility of GlcN-6-P synthase phosphorylation by PKA strongly reduces but not completely eliminates the germinative response of C. albicans cells.  相似文献   

5.
The human fungal pathogen Candida albicans changes from a budding yeast form to a polarized hyphal form in response to various external conditions. Dimorphic switching of C. albicans has been implicated in the development of pathogenicity. Morphogenic transformation requires polarized cell growth and rearrangement of the cytoskeleton. We previously showed that myosins play key roles in the conversion from the bud to the hyphal form of C. albicans by inhibiting myosin activities with 2,3-butanedione-2-monoxime (BDM), a general myosin ATPase inhibitor. In this study we investigated the function of MYO2 in C. albicans using deletion mutants. The amino acid sequence of CaMYO2 shows 60% identity and 77% homology with MYO2 and 54% identity and 70% homology with MYO4 of budding yeast Saccharomyces cerevisiae, suggesting that CaMYO2 is the only class V myosin in C. albicans. Cells in which both CaMYO2 alleles were deleted were viable, suggesting that MYO2 is nonessential in C. albicans. The proliferation of CaMYO2delta cells, however, was sharply decreased. In addition, CaMYO2delta cells showed defects in assembly and polarized localization of F-actin as well as an inability to induce germ tube formation and hyphal growth. The deletion of CaMYO2 also disrupted the shape and migration of the nucleus. These results strongly suggest that CaMYO2 is essential for polarized growth and hyphal transition in C. albicans.  相似文献   

6.
Yeast cells of the human pathogen Candida albicans that enter the bloodstream can be engulfed by macrophage cells but survive in, and can escape from, the phagolysosome. The C. albicans gene HGT12, which is specifically expressed during macrophage infection, encodes a protein that transports fructose, glucose and mannose. Expression of this hexose transporter along with the shift from glycolysis to gluconeogenesis that occurs in these phagocytosed cells suggests a requirement for glucose that can be supplied in part by uptake from the lumen of the phagolysosome.  相似文献   

7.
8.
Although the catalase gene (CAT1) disruptant of the human pathogenic yeast Candida albicans was viable under ordinary growth conditions, we previously found that it could not grow on YPD (yeast extract/peptone/dextrose) containing SDS or at higher growth temperatures. To investigate the pleiotrophic nature of the disruptant, we examined the effect of the catalase inhibitor 3-AT on the growth of wild-type strains. Surprisingly, the addition of 3-AT and SDS caused the wild-type cells to be non-viable on YPD plates. We found an additional phenotype of the catalase gene disruptant: it did not produce normal hyphae on Spider medium. Hyphal growth was observed in a CAP1 (Candida AP-1-like protein gene) disruptant, a HOG1 (high-osmolarity glycerol signaling pathway gene) disruptant, and the double CAP1/HOG1 disruptant, suggesting that the defect in hyphal formation by the catalase disruptant was independent of these genes. Addition of 3-AT and SDS to hyphae-inducing media suppressed growth of normal hyphae in the wild-type strain. The potential necessity for catalase action upon exposure to hyphae-inducing conditions was confirmed by the immediate elevation of the catalase gene message. In spite of the requirement for catalase during hyphal growth, the catalase gene disruptant was capable of forming germ tubes in medium containing serum.  相似文献   

9.
10.
目的探讨白念珠菌ALS3、SSA1基因缺失对阴道上皮细胞激发免疫反应的作用。方法培养白念珠菌野生株及ALS3、SSA1基因敲除株(SC5314、Δals3、Δssa1),对其进行形态测定。按不同MOI感染人阴道上皮细胞系VK2/E6E7细胞,通过台盼蓝染色观察和乳酸脱氢酶(LDH)活性检测,评价不同MOI白念珠菌对上皮细胞的损伤作用;使用酶联免疫吸附试验(ELISA)评估感染过程中炎性细胞因子及趋化因子在共培养上清中的差异。结果 ALS3基因的缺失对白念珠菌芽管长度影响差异无统计学意义,而SSA1基因的缺失与其他两个菌株相比芽管长度减少约30%~40%(P<0.001)。台盼蓝染色观察及LDH测定发现,3株菌在感染上皮细胞时,其细胞损伤能力均与菌载量成正比;与野生型相比,Δssa1突变体在相同比率感染上皮细胞时,细胞损伤能力明显降低,且差异有统计学意义(P<0.05),Δals3突变株影响较小,甚至略微升高。检测炎性细胞因子及趋化因子发现,突变株在诱导上皮细胞产生促炎因子及趋化因子(GM-CSF、G-CSF、IL-1α、IL-8)的能力上明显减弱,差异均有统计学意义(P<0.05)。结论 ALS3和SSA1基因表达在阴道上皮细胞抗白念珠菌感染的局部免疫应答过程中可能起到重要作用,且SSA1基因表达意义更大。  相似文献   

11.
The LYS2 and LYS5 genes of the pathogenic yeast Candida albicans are required for the alpha-aminoadipate reductase (AAR) reaction in the lysine biosynthetic pathway. The LYS2 encodes an apo-AAR (Lys2p) and the LYS5 encodes a phosphopantetheinyl transferase (PPTase) for the post-translational activation of AAR. Our cloned C. albicans LYS5 gene encodes a 38.4 kDa PPTase which is 27% identical and 43% similar to the Saccharomyces cerevisiae Lys5p. Sequence alignment of Lys5p with other PPTases reveals highly conserved putative PPTase domains including the Core 3, WXXKESXXK (residues 194-202). Recombinant Lys5p expressed in Escherichia coli activates C. albicans Lys2p for the AAR activity and also activates AARs from S. cerevisiae and to a lesser extent Schizosaccharomyces pombe. Site-directed mutational analyses reveal glutamic acid 198 in the Lys5p Core 3 as essential for the activation of recombinant Lys2p AAR activity. Other conserved amino acids were also analyzed for their influence on Lys5p PPTase activity. Our results demonstrate cloning of the LYS5 gene, expression of Lys5p, in vitro Lys2p activation model and characterization of the functional motifs of the C. albicans PPTase.  相似文献   

12.
The protective role of trehalose against oxidative stress caused by hydrogen peroxide in Candida albicans has been investigated in the homozygous mutant ntc1Delta/ntc1Delta, disrupted in the NTC1 gene, which encodes the neutral (cytosolic) trehalase (Ntc1p). After a severe oxidative exposure (50 mM H(2)O(2)), both parental (CAI-4) and ntc1Delta/ntc1Delta exponential-phase cells stored large amounts of intracellular trehalose. In turn, the degree of cell survival was roughly equivalent in both strains, although slightly higher in ntc1Delta/ntc1Delta cultures. The mechanism of 'adaptive tolerance' was functional in the two strains. Thus, a gently oxidative pretreatment (5 mM H(2)O(2)) increased the recovery of cellular viability when it was followed by a severe challenge (50 mM H(2)O(2)); this phenomenon was accompanied by a significant elevation of the endogenous trehalose content. Oxidative stress also induced specific activation of the antioxidant enzymes catalase and glutathione reductase upon gentle oxidative treatment (5 mM H(2)O(2)), whereas superoxide dismutase activity was only activated upon prolonged exposure. Taken together, these results strongly suggest that in C. albicans neutral trehalase activity does not play an essential role in the protective response against oxidative stress. They also suggest that a diminished Ntc1p activity might favour the growth of C. albicans cells subjected to a strong oxidative exposure.  相似文献   

13.
【目的】从高产甘油生产菌株产甘油假丝酵母(Candida glycerinogenes)基因组中克隆了NAD+依赖3-磷酸甘油脱氢酶编码基因(CgGPD),但是该基因及其上游调控序列具体的功能还是未知的。本文研究了CgGPD基因及其上游调控序列的功能。【方法】本文以酿酒酵母(Saccharomyces cerevisiae)及其渗透压敏感型突变株为宿主,构建3种不同的酵母表达载体导入酵母细胞,研究了不同酵母转化子在渗透压胁迫条件下CgGPD基因表达对细胞的耐高渗透压胁迫应答及其细胞的甘油合成能力的影响。【结果】实验结果表明无论是以来源于S. cerevisiae 的TPI启动子还是来源于CgGPD基因的启动子,过量表达CgGPD基因的转化子均能够显著加速葡萄糖消耗速度和提高甘油合成能力,在gpd1/gpd2突变株中表达CgGPD基因能够消除细胞对外界高渗透压的敏感性,同时转化子胞内甘油大量积累。【结论】CgGPD基因在野生型酵母S. cerevisiae W303-1A表达显著提高细胞的甘油合成能力,在gpd/1gpd2突变株中能够互补GPD1基因的功能,CgGPD基因表达受渗透压诱导 调控。  相似文献   

14.
A novel NADPH-dependent reductase (CaCR) from Candida albicans was cloned for the first time. It catalyzed asymmetric reduction to produce ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE). It contained an open reading frame of 843 bp encoding 281 amino acids. When co-expressed with a glucose dehydrogenase in Escherichia coli, recombinant CaCR exhibited an activity of 5.7 U/mg with ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. In the biocatalysis of COBE to (S)-CHBE, 1320 mM (S)-CHBE was obtained without extra NADP+/NADPH in a water/butyl acetate system, and the optical purity of the (S)-isomer was higher than 99% enantiomeric excess.  相似文献   

15.
A thermosensitive strain (YMR134Wts) of the essential gene YMR134W presented up to 40% less ergosterol, threefold lower oxygen consumption and impaired growth on respiratory conditions. The iron content in the mitochondrial fraction of YMR134Wts cells was considerably low, despite these cells uptake and accumulate more iron from the culture media than wild-type cells. YMR134Wts cells were also more susceptible to oxidative stress. The results suggest that Ymr134wp is essential to aerobic growth due to its function in ergosterol biosynthesis, playing a role in maintaining mitochondrial and plasma membrane integrity and consequently impacting the iron homeostasis, respiratory metabolism and antioxidant response.  相似文献   

16.
Acetyl-CoA carboxylase [ACCase; acetylCoA: carbon dioxide ligase (ADP forming), EC 6.4.1.2] catalyses the ATP-dependent carboxylation of acetylCoA to form malonyl-CoA. We have amplified a fragment of the biotin carboxylase (BC) domain of the Ustilago maydis acetyl-CoA carboxylase (ACC1) gene from genomic DNA and used this amplified DNA fragment as a probe to recover the complete gene from a EMBL3 genomic library. The ACC1 gene has a reading frame of 6555 nucleotides, which is interrupted by a single intron of 80 bb in length. The gene encodes a protein containing 2185 amino acids, with a calculated Mr of 242 530; this is in good agreement with the size of ACCases from other sources. Further identification was based on the position of putative binding sites for acetyl-CoA, ATP, biotin and carboxybiotin found in other ACCases. A single ACC1 allele was disrupted in a diploid wild-type strain. After sporulation of diploid disruptants, no haploid progeny containing a disrupted acc1 allele were recovered, even though an exogenous source of fatty acids was provided. The data indicate that, in U. maydis, ACCase is required for essential cellular processes other than de novo fatty acid biosynthesis.The EMBL accession number for the sequence reported in this paper is Z46886  相似文献   

17.
18.
Polymerase chain reaction (PCR) primers that flank a 688-bp segment within the glutamate dehydrogenase gene (gdh) of Streptococcus suis type 2 could amplify efficiently the DNA of all 306 (100%) clinical S. suis isolates tested (pigs, n=305; human, n=1) encompassing all serotypes obtained from diverse organs, and geographic origins. When DNA from other bacteria were used as templates for amplification, no product was detected indicating specificity of the primers. Multiplex PCR was developed using the gdh gene primer pair and primers that targeted the gene encoding S. suis capsular biosynthesis (cps). This strategy enabled the detection of strains belonging to serotypes 1/2, 1, 2, 7, and 9, respectively. Using the multiplex-PCR technique, 12 out of 14 (86%) isolates that were previously identified as non-typable S. suis (based on biochemical reactions and serology) gave positive PCR results of which four were positive for serotype 7, three for serotype 2, and five for S. suis strains that belong to other serotypes. Retest results of all 14 isolates by several veterinary laboratories were identical with PCR and confirmed that the two non-PCR reactive isolates belonged to strains of other streptococcal species. These results indicated that PCR improved species determination and can thus be used as a reliable species-specific molecular diagnostic reagent for the accurate identification of S. suis isolates and a serotype-specific method for the detection of strains of serotypes 1/2, 1, 2, 7, and 9, respectively. The PCR method therefore has potential clinical and epidemiological applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号