首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
拟南芥漆酶基因家族有17个成员,但其功能还不清楚。本文采用过量表达的方法初步分析了拟南芥漆酶基因AtLAC2的功能。GUS染色显示AtLAC2在拟南芥不同生长发育时期的多个组织和器官中都有较强的表达,且在叶片和茎尖中的表达最强。AtLAC2的过量表达植株开花时间推迟,花序轴分枝变多,叶片变小。以上结果表明AtLAC2基因在调控植物生长发育中具有重要作用。  相似文献   

2.
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控.构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(Arabidopsis thaliana L.)植物和水稻(Oryza sativa L.)愈伤组织中以过量表达OsZFP1基因.转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高.这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达.在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节.  相似文献   

3.
水稻受盐抑制基因OsZFP1的转基因分析   总被引:7,自引:0,他引:7  
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控。构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(ArabidopsisthalianaL.)植物和水稻(OryzasativaL.)愈伤组织中以过量表达OsZFP1基因。转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高。这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达。在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节。  相似文献   

4.
拟南芥CIPK1基因的功能初步分析   总被引:1,自引:0,他引:1  
以模式植物拟南芥为材料,采用RT-PCR分析、基因克隆、转化等方法对CIPK1基因功能进行了研究.结果发现,CIPK1(CBL-interacting protein kinase 1)基因在拟南芥茎和花中表达量最高,在叶中表达量最低;ABA能迅速诱导CIPK1基因的表达,GA则抑制该基因的表达,但2,4-D和6-BA对该基因的表达无明显影响;通过对CIPK1基因转基因突变体进行ABA处理,发现转基因拟南芥种子的萌发率明显高于野生型.以上结果表明CIPK1基因的表达具有组织特异性,并且该基因参与ABA和GA信号传导,尤其在ABA促进种子休眠的信号传导途径中具有非常重要的作用.  相似文献   

5.
棉花乙烯合成基因促进拟南芥和烟草不定根发生的研究   总被引:1,自引:0,他引:1  
从棉花纤维cDNA中克隆获得乙烯合成基因GhACO3,构建了植物过量表达载体p35S::GhACO3.通过花序侵染法和叶盘法分别转化拟南芥和烟草,利用卡那霉素筛选及分子检测获得转基因阳性拟南芥和烟草植株.结果表明,GhACO3基因已整合到拟南芥和烟草基因组中;经过纯合筛选后获得转基因T2代拟南芥植株;与野生型拟南芥相比,GhACO3基因对拟南芥不定根发生具有显著促进作用;与野生型烟草植株相比,转GhACO3基因烟草不定根发生得到了显著的促进.研究表明,GhACO3基因的过量表达能够促进拟南芥和烟草不定根的形成发育,为进一步探讨GhACO3的生物学功能和进行转基因育种奠定了基础.  相似文献   

6.
为了研究AtNHX5基因在植物耐盐中的作用,构建了植物过量表达载体pROKⅡ-AtNHX5,并转化拟南芥。结果显示:(1)RT-PCR检测表明,转基因拟南芥中AtNHX5基因的表达大幅提高。(2)对转基因纯合株系进行耐盐性分析显示,AtNHX5过量表达提高了植株在种子萌发和苗期的耐盐性。(3)转基因植株在盐处理下的干重、鲜重以及地上部分Na+、K+含量均高于野生型对照。在200mmol/L NaCl处理下,以转基因株系a1-4为例,其地上部分单株鲜重、单株干重、K+含量分别是野生型的1.27、1.54、1.16倍,较野生型显著升高。研究表明,过量表达AtNHX5基因促进了盐胁迫下转基因植株对K+的吸收,转基因拟南芥的耐盐性明显提高。  相似文献   

7.
拟南芥AtNCED2基因启动子区域序列克隆及其活性分析   总被引:1,自引:0,他引:1  
目的:克隆拟南芥AtNCED2基因启动子区域序列,并分析其组织器官特异性及对外界刺激的响应.方法:通过PCR从拟南芥基因组中克隆AtNCED2基因5'侧翼2295bp启动子区域序列(AtNCED2p),并进行生物信息学分析.构建AtNCED2p驱动GUS的植物双元表达载体pAtNCED2p::GUS,通过根癌农杆菌介导法将其转化野生型拟南芥,检测转基因植侏中GUS表达的组织器官特异性.结果:该启动子序列中存在TATA-box、CAAT-box、根器官特异性元件、ABA响应元件、低温响应元件、昼夜节律响应元件等顺式作用元件.GUS活性主要集中在转基因拟南芥根尖及侧根发生部位.外源ABA处理的转基因植株根中GUS活性为174.8nmol 4-MU min-1 mg-1蛋白,明显高于对照值91.7nmol 4-MU min-1mg-1蛋白.结论:AtNCED2基因可能在根的生长和发育中起作用,且外源ABA处理增强其在根中的表达.  相似文献   

8.
为研究ASL25/LBD28基因在植物发育过程中的作用,该研究构建了拟南芥ASL25/LBD28的过量表达载体并将其转入野生型拟南芥中,结果发现,ASL25/LBD28基因的过量表达可导致转基因拟南芥的叶片变得狭长;在叶极性发育突变体as2中,ASL25/LBD28基因过量表达导致部分转基因植株在形成1~3片畸形叶后顶端分生组织的发育会终止;而许多转基因植株则会形成许多"针状"叶.扫描电镜观察表明,不正常的叶片近轴面或"针状"叶的表皮细胞具有远轴面化的长条形细胞,说明在as2突变体中过量表达ASL25/LBD28基因影响叶片的极性发育.  相似文献   

9.
AtLH基因是BcpLH基因在拟南芥(Arapsis thaliana L.)中的同源基因,含有两个编码双链RNA结合蛋白的结构域.在大白菜叶球发育过程中,BcpLH基因与包叶的卷曲有关.为研究AtLH的基因对叶卷曲这一重要生物学现象的调控作用,构建了35S:AtLH基因的正义表达载体并转化拟南芥.与野生型比较页言,转基因植株的花和叶中AtLH的表达量有显著增加,成为AtLH基因过量的植株.这些植株的莲座叶向外或向下卷曲,呈现明显的偏上性生长;而且抽苔和开花时间延迟;在营养生长期其短缩茎的叶腑处着生数个侧茎,表现为顶端优势减弱;在生殖生长期二级花序减少使得主花序更加发达,表现为顶端优势增强,转基因植株对激素的敏感性改变,IAA剌激根生长的作用增强,ABA抑制根生长的作用减弱.由此可见,AtLH基因的过量表达可引起转基因植株的叶片向下卷曲.  相似文献   

10.
GmC2H2转录因子基因是本实验室获得的一个编码172个氨基酸携带516bp核苷酸的转录因子,属于经典C2H2型锌指蛋白.通过构建植物表达载体GmC2H2-pCAMBIA1304,借助优化的Floral-dip法转化模式植物拟南芥,经潮霉素Hygromycine( 45-50 mg/L)抗性筛选获得转基因拟南芥植株.GUS组织染色分析表明,GmC2H2基因在生长12d的转基因拟南芥幼苗中,表达部位主要集中在根部.对转基因拟南芥进行了低温(1℃)和脱落酸(200 μmol/L)胁迫处理,测定其生理生化指标,通过real-time qPCR确定目的基因在转基因拟南芥中的表达情况.结果表明,携带GmC2H2目的基因的转基因拟南芥中脯氨酸和可溶性糖水平要高于野生型植株,而丙二醛水平要低于野生型,在抗逆性方面明显优于野生型拟南芥植株;并且胁迫处理下的转基因拟南芥中GmC2H2基因的表达量要高于未胁迫处理的转基因植株,说明GmC2H2基因的表达受低温和ABA的诱导,初步明确了该转录因子基因的功能.  相似文献   

11.
To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impaired and root growth was also greatly reduced. Additional experiments with flacca showed that shoot growth substantially recovered when wild-type levels of ABA were restored by treatment with exogenous ABA, even though improvement in leaf water potential was prevented. The ability of applied ABA to increase growth was greatest for leaf expansion, which was restored by 75%. The ethylene evolution rate of growing leaves was doubled in flacca compared to the wild type and treatment with silver thiosulphate to inhibit ethylene action partially restored shoot growth. The results demonstrate that normal levels of endogenous ABA are required to maintain shoot development, particularly leaf expansion, in well-watered tomato plants, independently of effects on plant water balance. The impairment of shoot growth caused by ABA deficiency is at least partly attributable to ethylene.  相似文献   

12.
13.
Plants of Tagetes erecta L. (marigold) cultivated in vitro in ventilated containers exhibited greater control of leaf water loss and increased survival in the field than plants cultivated in sealed containers. Increased field survival of plants cultivated in ventilated containers was attributed to higher levels of endogenous abscisic acid (ABA). Therefore, ABA was supplied exogenously to plants in sealed or ventilated containers by adding ABA (10(-6), 10(-5), 10(-4) M) to the in vitro culture media in order to evaluate control of leaf water loss, growth and field survival. The addition of 10(-4) M ABA to the culture media in sealed containers produced plants that had similar control of leaf water loss and were morphologically similar to plants cultivated in ventilated containers without the addition of ABA. Field survival of 10(-4) M ABA plants (75%) was increased compared to plants cultivated in sealed containers without ABA (31%), with survival being closer to that of plants cultivated in ventilated containers (90-100%). Plants cultivated with 10(-4) M ABA (sealed and ventilated) also exhibited increased plant vigour and leaf area in the field compared to plants cultivated without ABA. The results suggest that the limited field survival and growth of plants cultured in vitro are related to the limited ABA concentrations they accumulate while in vitro. Consequently, conditions that increase the endogenous ABA concentrations of in vitro plants (like ventilation or ABA addition to the medium) would improve the control of leaf water loss, field survival and plant vigour.  相似文献   

14.
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants in which expression of the LeNCED1 coding region is under tetracycline-inducible control. When leaf explants from these plants were treated with tetracycline, NCED mRNA was induced and bulk leaf ABA content increased by up to 10-fold. Transgenic tomato plants were also produced containing the LeNCED1 coding region under the control of one of two strong constitutive promoters, either the doubly enhanced CaMV 35S promoter or the chimaeric 'Super-Promoter'. Many of these plants were wilty, suggesting co-suppression of endogenous gene activity; however three transformants displayed a common, heritable phenotype that could be due to enhanced ABA biosynthesis, showing increased guttation and seed dormancy. Progeny from two of these transformants were further characterized, and it was shown that they also exhibited reduced stomatal conductance, increased NCED mRNA and elevated seed ABA content. Progeny of one transformant had significantly higher bulk leaf ABA content compared to the wild type. The increased seed dormancy was reversed by addition of the carotenoid biosynthesis inhibitor norflurazon. These data provide strong evidence that NCED is indeed a key regulatory enzyme in ABA biosynthesis in leaves, and demonstrate for the first time that plant ABA content can be increased through manipulating NCED.  相似文献   

15.
To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.  相似文献   

16.
The aims of the present study are to find out whether the effects of arbuscular mycorrhizal (AM) symbiosis on plant resistance to water deficit are mediated by the endogenous abscisic acid (ABA) content of the host plant and whether the exogenous ABA application modifies such effects. The ABA-deficient tomato mutant sitiens and its near-isogenic wild-type parental line were used. Plant development, physiology, and expression of plant genes expected to be modulated by AM symbiosis, drought, and ABA were studied. Results showed that only wild-type tomato plants responded positively to mycorrhizal inoculation, while AM symbiosis was not observed to have any effect on plant development in sitiens plants grown under well-watered conditions. The application of ABA to sitiens plants enhanced plant growth both under well-watered and drought stress conditions. In respect to sitiens plants subjected to drought stress, the addition of ABA had a cumulative effect in relation to that of inoculation with G. intraradices. Most of the genes analyzed in this study showed different regulation patterns in wild-type and sitiens plants, suggesting that their gene expression is modulated by the plant ABA phenotype. In the same way, the colonization of roots with the AM fungus G. intraradices differently regulated the expression of these genes in wild-type and in sitiens plants, which could explain the distinctive effect of the symbiosis on each plant ABA phenotype. This also suggests that the effects of the AM symbiosis on plant responses and resistance to water deficit are mediated by the plant ABA phenotype.  相似文献   

17.
It has been suggested that abscisic acid (ABA) regulates a centralized response of plants to low soil resource availability that is characterized by decreased shoot growth relative to root growth, decreased photosynthesis and stomatal conductance, and decreased plant growth rate. The hypothesis was tested that an ABA-deficient mutant of tomato (flacca; flc) would not exhibit the same pattern of down-regulation of photosynthesis, conductance, leaf area and growth, as well as increased root/shoot partitioning, as its near isogenic wild-type in response to nitrogen or water deficiency, or at least not exhibit these responses to the same degree. Plants were grown from seed in acid-washed sand and exposed to control, nutrient stress, or water stress treatments. Additionally, exogenous ABA was sprayed onto the leaves of a separate group of flc individuals in each treatment. Growth analysis, based on data from frequent harvests of a few individuals, was used to assess the growth and partitioning responses of plants, and gas exchange characteristics were measured on plants throughout the experiment to examine the response of photosynthesis and stomatal conductance. Differences in growth, partitioning and gas exchange variables were found between flc and wild-type individuals, and both nutrient and water treatments caused significant reductions in relative growth rate (RGR) and changes in biomass partitioning. Only the nutrient treatment caused significant reductions in photosynthetic rates. However, flc and wild-type plants responded identically to nutrient and water stress for all but one of the variables measured. The exception was that flc showed a greater decrease in the relative change in leaf area per unit increase of plant biomass (an estimate of the dynamics of leaf area ratio) in response to nutrient stress—a result that is opposite to that predicted by the centralized stress response model. Furthermore, addition of exogenous ABA to flc did not significantly alter any of the responses to nutrient and water stress that we examined. Although it was clear that ABA regulated short-term stomatal responses, we found no evidence to support a pivotal role for ABA, at least absolute amounts of ABA, in regulating a centralized whole-plant response to low soil resource availability.  相似文献   

18.
Leaf growth of many plant species shows rapid changes in response to alterations of the form and the level of N supply. In hydroponically-grown tomato (Lycopersicon esculentum L.), leaf growth was rapidly stimulated by NO(3)(-) application to NH(4)(+) precultured plants, while NH(4)(+) supply or complete N deprivation to NO(3)(-) precultured plants resulted in a rapid inhibition of leaf growth. Just 10 microM NO(3)(-) supply was sufficient to stimulate leaf growth to the same extent as 2 mM. Furthermore, continuous NO(3)(-) supply induced an oscillation of leaf growth rate with a 48 h interval. Since changes in NO(3)(-) levels in the xylem exudate and leaves did not correlate with NO(3)(-)-induced alterations of leaf growth rate, additional signals such as phytohormones may be involved. Levels of a known inhibitor of leaf growth, abscisic acid (ABA), did not consistently correspond to leaf growth rates in wild-type plants. Moreover, leaf growth of the ABA-deficient tomato mutant flacca was inhibited by NH(4)(+) without an increase in ABA concentration and was stimulated by NO(3)(-) despite its excessive ethylene production. These findings suggest that neither ABA nor ethylene are directly involved in the effects of N form on leaf growth. However, under all experimental conditions, stimulation of leaf growth by NO(3)(-) was consistently associated with increased concentration of the physiologically active forms of cytokinins, zeatin and zeatin riboside, in the xylem exudate. This indicates a major role for cytokinins as long-distance signals mediating the shoot response to NO(3)(-) perception in roots.  相似文献   

19.
The relationships of guard cell ABA content to eight stress-related physiological parameters were determined on intact Vicia faba L. plants that were grown hydroponically with split-root systems. Continuous stress was imposed by the addition of PEG to part of the root system. The water potentials of roots sampled after the addition of PEG were 0.25 MPa lower than the water potentials of other roots of the same plant, which were similar to the roots of untreated plants. The leaflet water potentials of plants sampled within 2 h of stress imposition were similar to those of control plants. However, leaf conductance was lower in plants sampled after only 20 min of stress imposition, and the root- and leaflet apoplastic ABA concentrations of these plants were higher than those of untreated plants. As the essence of this report, there was a linear relationship between guard cell ABA content and leaf conductance. Leaflet apoplastic ABA concentrations <150 nM were also linearly related to leaf conductance, but higher leaflet apoplastic ABA concentration did not cause equally large further declines in leaf conductance. It is suggested that evaporation from guard cell walls caused ABA to accumulate in the guard cell apoplast and this pool was saturated at high leaflet apoplastic ABA concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号