首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Muscle spindle development and function are dependent upon sensory innervation. During muscle regeneration, both neural and muscular components of spindles degenerate and it is not known whether reinnervation of a regenerating muscle results in reestablishment of proper neuromuscular relationships within spindles or whether sensory neurons may exert an influence upon differentiation of these spindles. Muscle spindle regeneration was studied in bupivacaine-treated grafts of rat extensor digitorum longus (EDL) muscles. Three types of EDL graft were performed in order to manipulate the extent to which regenerating spindles might be reinnervated: (1) grafts reinnervated following severance of their nerve supply (standard grafts); (2) grafts in which intact nerve sheaths appear to facilitate reinnervation (nerveintact grafts); and (3) grafts in which reinnervation was prevented (nonreinnervated grafts). Complete degeneration of muscle fibers occurred in all grafts prior to regeneration. Initial formation of spindles in regenerating EDL grafts is independent of innervation; intrafusal muscle fibers degenerate and regenerate within spindle capsules that remain intact and viable. The extent of spindle differentiation was evaluated in each type of graft using criteria that included nucleation and ATPase activity, both of which have been shown to be regulated by sensory innervation, as well as the number of muscle fibers/spindle and morphology of spindle capsules.While most spindles contained normal numbers of muscle fibers, most of these fibers were morphologically and histochemically abnormal. Alterations of ATPase activity occurred in all spindles, but were least severe in nerve-intact grafts. While fully differentiated nuclear bag and chain fibers were not observed in regenerated spindles, large, vesicular nuclei, similar to those of normal intrafusal fibers, were present in a small number of spindles in nerve-intact grafts. Sensory nerve terminations were observed only in those spindles that also contained the distinctive nuclei. This study suggests that a specific neurotrophic influence is necessary for regeneration of normal intrafusal muscle fibers and that this influence corresponds to the properly timed sensory neuron-muscle interaction which directs muscle spindle embryogenesis. However, the infrequent occurrence of characteristics unique to intrafusal muscle fibers indicates that reinnervation of regenerating muscle grafts by sensory neurons is inadequate and/or faulty.  相似文献   

2.
Muscle spindles from the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of genetically dystrophic mice of the dy2J/dy2J strain were compared with age-matched normal animals at neonatal ages of 1-3 weeks according to histochemical, quantitative, and ultrastructural parameters. Intrafusal fibers in both the soleus and EDL exhibited similar regional differences in myosin ATPase activity, and conformed to those noted previously in various adult species. In distal polar regions, all nuclear bag fibers resembled extrafusal fibers of the type 1 variety, whereas in capsular zones they could be divided into two subtypes. Nuclear chain fibers possessed a staining pattern similar to type 2 extrafusal fibers, and in contrast to the bag fibers they exhibited no regional variations. These features were consistently observed in both the normal and dystrophic muscles at all ages. Spindles varied only slightly in their number and distribution in the two types of muscle, and their location followed the neurovascular branching pattern in each. Irrespective of age or genotype, spindles in the soleus were more homogeneously dispersed, but those in the EDL were concentrated along the dorsal aspect of the muscle. No significant differences were noted in the total number of spindles between normal and dystrophic muscles. In addition, no dramatic differences were observed in the muscle spindle index for soleus and EDL. The first obvious disease-related changes were noted in extrafusal fibers of the soleus of 3-week-old mice, and spindles were often located close to these areas of fiber degeneration. Despite alterations in the surrounding tissue, however, spindles appeared morphologically unaltered in dystrophy. These observations indicate that intrafusal fibers of spindles in neonatal mice appear enzymatically and histologically unaffected in incipient stages of progressive muscular dystrophy.  相似文献   

3.
4.
Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-microns frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type. The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofibrils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for 'myofibrillar' adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation. Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

5.
Skeletal muscle regenerates following grafting, but little is known about protein synthesis and its regulation during regeneration. We determined the sequence of changes in protein synthesis in rat extensor digitorum longus (EDL) muscle by the measurement of phenylalanine (Phe) incorporation into muscle protein at various times after grafting. Compared with control EDL, Phe incorporation in grafts doubled in 1 day, was four- to eight-fold greater from days 2 to 10 after grafting, and then subsided. Tissue mass (wet weight) increased rapidly from days 7 to 20 in EDL grafts. The maximal increase in protein synthesis occurred 7-10 days after grafting, whether or not the nerve was left intact. Autoradiography indicated that incorporated radioactivity was associated with regenerating muscle fibers on day 10. Deficiencies of insulin, pituitary or testicular hormones, or chronic in vivo administration of insulin, growth hormone, testosterone, or tri-iodothyronine did not substantially alter the elevation in incorporation of the Phe into muscle protein 10 days after grafting. The breakdown of EDL protein, measured in vitro simultaneously with protein synthesis, was increased five-fold, and overall protein degradation was elevated six-fold 10 days after grafting. These findings indicate that Phe incorporation is rapidly elevated following grafting of the EDL, and that by days 7-10 reflects synthesis in regenerating muscle fibers. The increase in protein synthesis associated with muscle regeneration at this time appears to be independent of innervation and anabolic hormones.  相似文献   

6.
Sensory and motor fibers of peripheral nerves were irreversibly destroyed in fetal rats by administering beta bungarotoxin (BTX) on embryonic day 16 or 17, after assembly of primary myotubes, but before the formation of muscle spindles. Soleus muscles of toxin-treated fetuses and their untreated littermates were removed just prior to birth and were examined by light microscopy of serial transverse sections for the presence of spindles and immunocytochemical expression of several isoforms of myosin heavy chains (MHC). Untreated muscles exhibited numerous spindles that were innervated by branches of intramuscular nerves and contained muscle fibers expressing a slow-tonic MHC isoform characteristic of the intrafusal but not extrafusal fibers. Toxin-treated muscles were devoid of intramuscular nerve bundles and perineurial structures. Encapsulations of muscle fibers resembling spindles were absent and no myotubes expressed the slow-tonic MHC isoform associated with intrafusal fibers in beta BTX-treated muscles. Thus, the assembly of muscle spindles, formation of the spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers that contain spindle-specific myosin isoforms all depend on the presence of innervation in prenatal rat muscles.  相似文献   

7.
Chicken leg muscles were examined to calculate the percentages of slow myosin heavy chain (MHC)-positive fibers in spindles and in adjacent extrafusal fascicles, and to clarify how the encapsulated portions of muscle spindles are positioned relative to these fascicles. Unlike mammals, in chicken leg muscles slow-twitch MHC and slow-tonic MHC are expressed in intrafusal fibers and in extrafusal fibers, suggesting a close developmental connection between the two fiber populations. In 8-week-old muscles the proportions of slow MHC-positive extrafusal fibers that ringed muscle spindles ranged from 0-100%. In contrast, proportions of slow MHC-positive intrafusal fibers in spindles ranged from 0-57%. Similar proportions in fiber type composition between intrafusal fibers and surrounding extrafusal fibers were apparent at embryonic days 15 and 16, demonstrating early divergence of extrafusal and intrafusal fibers. Muscle spindles were rarely located within single fascicles. Instead, they were commonly placed where several fascicles converged. The frequent extrafascicular location of spindles suggests migration of intrafusal myoblasts from developing clusters of extrafusal fibers toward the interstitium, perhaps along a neurotrophic gradient established by sensory axons that are advancing in the connective tissue matrix that separates adjoining fascicles.  相似文献   

8.
The occurrence and distribution of muscle spindles was studied in histochemically and conventionally stained serial cross sections of 6-week-old and adult rat masticatory and suprahyoid muscles. Spindles were present in moderate to large numbers in jaw closers, but they were absent in jaw openers and two of four muscles of an accessory suprahyoid group. In jaw closers, 67% or more of the total spindle population was concentrated relatively distant from the temporomandibular joint, in muscle portions which contained large numbers of extrafusal fibers reacting strongly for oxidative enzymes. Because of their location, spindles in these portions should be stretched more and, subsequently, should respond with a greater afferent discharge at any given muscle length than spindles situated nearer to the joint. Spindles in jaw closers, especially the medial pterygoid and deep masseter, often occurred in clusters and complex forms near the terminal branching of intramuscular nerve trunks. No such concentrations were seen in the two muscles of the accessory suprahyoid group that had spindles. The association in jaw closers of spindles with extrafusal fibers high in oxidative enzyme activity is consistent with the view that spindles are the sensory component of a reflex system that recruits these fibers for finely-graded contractions in response to small internal length-changes of the muscle (Botterman et al., '78); however, in jaw openers and two muscles of the accessory suprahyoid group, the absence of spindles, coupled with the presence of large populations of extrafusal fibers high in oxidative enzyme activity, is not easily reconciled with this concept.  相似文献   

9.
Intrafusal fibers within muscle spindles make up a small subpopulation of muscle fibers. These proprioceptive fibers differ from most extrafusal fibers because, even in maturity, their diameters remain small, and they retain expression of developmental myosins. Although both extrafusal and intrafusal fibers contain satellite cells (SCs), comparatively little is known about intrafusal SCs. Analyzing chicken fast-phasic posterior (PLD) and slow-tonic anterior (ALD) latissimus dorsi muscles, we show that SCs of both intrafusal and extrafusal fibers express Pax7. We further test the hypotheses that intrafusal fibers display parameters reflective of extrafusal immaturity. These hypotheses are that intrafusal fibers contain (a) higher SC frequencies (number of SC nuclei/all nuclei within basal lamina) and concentrations (closer together) and (b) smaller myonuclear domains than do adjacent extrafusal fibers. IHC techniques were applied to PLD and ALD muscles excised at 30 and 138 days posthatch. The hypotheses were validated, suggesting that intrafusal fibers have greater capacities for growth, regeneration, and repair than do adjacent extrafusal fibers. During maturation, extrafusal and intrafusal fibers show similar trends of decreasing SC frequencies and concentrations and increases in myonuclear domains. Thus, extrafusal and intrafusal fibers alike should exhibit reduced capacities for growth, regeneration, and repair during maturation.  相似文献   

10.
Guinea pig soleus, medial gastrocnemius and vastus lateralis muscles were compared for spindle density and distribution, number of intrafusal fibers per spindle and histochemical appearance of the axial bundle. A total of 326 spindles was used in the comparisons. Spindle density was over four times greater in the soleus than in either the medial gastrocnemius or vastus lateralis. In the soleus the spindles were distributed at random, but in the other two muscles no spindles were found in those fascicles in which fast-twitch glycolytic extrafusal fibers predominated. The average number of intrafusal fibers per spindle varied by less than 5% between the three kinds of muscles. About 80% of all spindles located had four intrafusal fibers, two of the nuclear bag type and two of the nuclear chain type. The histochemical appearance of the axial bundle was the same in each kind of muscle. Based on intensities of the myofibrillar adenosine triphosphatase reaction product at polar regions nuclear bag fibers were separable into two histochemical groups; nuclear chain fibers were of only one histochemical type.  相似文献   

11.
Summary Regeneration of muscle spindles was quantified in a series of orthotopically and heterotopically autografted muscles of pigeons. Significantly fewer spindles relative to numbers of extrafusal fibers were present in grafts than in normal muscles. These results are in marked contrast to observations of free-grafted muscles of rats. A majority of grafts of the metapatagialis, a muscle devoid of spindles, into the site of the anterior latissimus dorsi contained spindles. A few spindles were present in grafts of the extensor digitorum communis, which normally contains many spindles, into the site formerly occupied by the metapatagialis whereas muscle spindles were absent in orthotopic grafts of the metapatagialis muscle. These observations suggest that the spindle-like structures observed in the extensor digitorum communis muscles, which regenerated in the sites of the metapatagialis, were derived from spindles of the donor muscle. Thus muscle spindles in transplanted avian muscle can form by two distinct developmental processes.This investigation was supported in part by research grants 1RO1AM26992 from the Public Health Service and PCM 79-16540 from the National Science Foundation  相似文献   

12.
13.
The neuroanatomical organization of the dynamic (bag1) and static (bag2 and chain) intrafusal systems was compared by light and electron microscopy of serial sections among 71 poles of muscle spindle in soleus (SOL), extensor digitorum longus (EDL), and lumbrical (LUM) muscles in the rat. Eighty-four percent of 195 fusimotor (gamma) axons to the spindles innervated either the dynamic bag1 fiber or the static bag2 and/or chain fibers. Sixteen percent of the gamma axons coinnervated the dynamic and static intrafusal fibers. Some of these nonselective axons were branches of effernts that also gave rise to axons selective to either the dynamic or static types of intrafusal fibers in one or more spindles. Thus activation of individual stem gamma efferents might not have a purely dynamic or purely static effect on the integrated afferent outflow from spindles of a hindlimb muscles in the rat. In addition, primary afferents in all muscles had terminations that cross-innervated the dynamic bag1 and static bag1 and/or chain intrafusal fibers in individual spindles, an arrangement that may enhance the mixed dynamic/static behavior of afferents when different intrafusal fibers are activated concurrent. Spindles of the slow SOL and fast EDL muscles had similar features, whereas differences were observed in the organization of the proximal (SOL and EDL) and distal (LUM) muscles. Spindles in LUM muscles had fewer static intrafusal fibers, a higher ratio of dynamic to static gamma axons, and a higher incidence of skeletofusimotor (beta) innervation to intrafusal fibers than spindles in the SOL or EDL muscles. Thus, the relative contribution of dynamic and static systems to muscle afferent outflow may differ among spindles located in different segments of the rat hindlimb. However, the dynamic and static intrafusal systems of spindle were less sharply demarcated in each of the three hindlimb rat muscles than in the cat tenuissimus muscle.  相似文献   

14.
Attachments of intrafusal fibers and of the outer spindle capsule at the far polar region were examined by immunohistochemistry in serially sectioned chicken leg muscles. Patterns of distribution of connective tissues and intracellular filaments suggest that, in this segment of the muscle spindle, intrafusal fibers bind laterally with the capsule. Contrary to extrafusal fibers at myotendinous junctions, folded plasmalemmas at the ends of intrafusal fibers were rare. Thus, there was little end-to-end interlocking between intrafusal fibers and the extracellular matrix. The tapered contours of terminating intrafusal fibers resembled those of extrafusal fibers which end in fascicles without tendinous connections. At points where the distal portions of intrafusal fibers closely adjoined and overlapped extrafusal fibers, α-actinin, vinculin, filamin, talin, β1 integrin, spectrin, and dystrophin occurred with moderate to great frequency. It is generally accepted that these compounds are links in molecular chains that extend from the intracellular space across cell membranes to the extracellular matrix. Their location along substantial lengths of extrafusal fibers, distal capsule, and terminating intrafusal fibers suggests the presence of numerous transverse connections between elements of the terminal portion of the spindle and nonspindle tissues. Hence, it is likely that forces monitored by chicken spindles in muscles undergoing length changes are transferred from extrafusal fibers and extracellular matrix to the receptors in large part via lateral shear instead of by longitudinal tension. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The properties of mammalian skeletal muscle demonstrate a high degree of structural and functional plasticity as evidenced by their adaptability to an atypical site after cross-transplantation and to atypical innervation after cross-innervation. We tested the hypothesis that, regardless of fiber type, skeletal muscles composed of regenerating fibers adapt more readily than muscles composed of surviving fibers when placed in an atypical site with atypical innervation. Fast muscles of rats were autografted into the site of slow muscles or vice versa with the donor muscle innervated by the motor nerve to the recipient site. Surviving fibers in donor muscles were obtained by grafting with vasculature intact (vascularized muscle graft), and regenerating fibers were obtained by grafting with vasculature severed (free muscle graft). Our hypothesis was supported because 60 days after grafting, transposed muscles with surviving fibers demonstrated only a slight change from the contractile properties and fiber typing of donor muscles, whereas transplanted muscles with regenerating fibers demonstrated almost complete change to those of the muscle formerly in the atypical site.  相似文献   

16.
Autonomic innervation of receptors and muscle fibres in cat skeletal muscle   总被引:3,自引:0,他引:3  
Cat hindlimb muscles, deprived of their somatic innervation, have been examined with fluorescence and electron microscopy and in teased, silver preparations; normal diaphragm muscles have been examined with electron microscopy only. An autonomic innervation was found to be supplied to both intra- and extrafusal muscle fibres. It is not present in all muscle spindles and is not supplied at all to tendon organs. Fluorescence microscopy revealed a noradrenergic innervation distributed to extrafusal muscle fibres and some spindles. On the basis of the vesicle content of varicosities the extrafusal innervation was identified as noradrenergic (32 axons traced), and the spindle innervation as involving noradrenergic, cholinergic and non-adrenergic axons (14 traced). Some of the noradrenergic axons that innervate spindles and extrafusal muscle fibres are branches of axons that also innervate blood vessels. We cannot say whether there are any noradrenergic axons that are exclusively distributed to intra- or extrafusal muscle fibres. The varicosities themselves may be in neuroeffective association with striated muscle fibres only, or with both striated fibres and the smooth muscle cells in the walls of blood vessels. The functional implications of this direct autonomic innervation of muscle spindles and skeletal muscle fibres are discussed and past work on the subject is evaluated.  相似文献   

17.
Innervation of regenerated spindles in muscle grafts of the rat   总被引:1,自引:0,他引:1  
Summary Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-m frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type.The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofi-brils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for myofibrillar adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment, of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation.Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

18.
We used a model of crush-induced regeneration in rat in order to characterize biochemically and histologically the implication of protein kinase C (PKC) in muscle repair after damage. In this model, slow soleus and fast extensor digitorum longus (EDL) muscle regeneration proceed differently. PKC activity has been assayed in regenerating muscles and their intact contralateral during the first 14 days following crushing. Degeneration (myolysis) occurring shortly after crush was associated with a marked down-regulation of the enzyme in both wound muscles and notable increase in the corresponding contralateral muscles. Muscle fiber reconstruction in EDL was associated with a rise in PKC activity which peaked at day 7 in regenerating muscle where it was twice higher than in intact muscle. At variance, muscle PKC activity in soleus increased slower than that of EDL and reached later intact level. Western blot analysis and immunohistochemical studies of representative members of the three PKC subfamilies were performed. All the isoform tested were much less expressed in regenerating than in control intact muscles suggesting that the overall PKC activity in regenerating muscles was more activable than in controls. We have shown that PKC isoforms were sequentially expressed during regeneration in both muscle types. PKC theta; being present the earliest, then delta, epsilon and alpha and finally zeta, beta and eta. Some isoforms were differentially expressed according muscle type. PKC delta being more expressed in soleus whereas beta and eta appeared earlier in EDL. Histochemical studies have revealed that the isoforms were differently localized in muscle tissue and that fiber regeneration was associated with PKC alpha translocation from sarcoplasma to sarcolemma. Together these data have shown that multiple PKC isoforms are implicated in the regenerative process acting at different in times and location and suggesting that individual isoform may fulfill distinct functions.  相似文献   

19.
Summary Pigeon muscles lacking muscle spindles were grafted into sites which normally have a muscle containing spindles. The reciprocal transplantations were also made. After two to eight months, the graft of the donor muscle without spindles had regenerated into a muscle containing muscle spindles. The reciprocal grafts, muscles containing spindles transplanted to a site lacking spindle innervation, had neither muscle spindles nor remnants of the spindles. These experiments demonstrate that 1) the innervation is required for formation of the spindle; 2) the original spindles do not survive transplantation; and 3) parts of the original spindle are not required for spindle regeneration.This work was supported in part by NSF grants PCM 77-15960 and PCM 79-16540  相似文献   

20.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号