首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Cells from a continuous human line and freshly isolated cells from old adult mice heterozygous at theMod-1 locus were fused in the presence of polyethylene glycol (PEG). The production of hybrid cells, as a function of PEG concentration in the presence and absence of phytohemagglutining (PHA), was measured by cell survival and proliferation on selective medium. The incorporation of PHA into the fusion mixture allowed cell fusion to take place at nontoxic concentrations of PEG. PHA increased the frequency of cell fusion and increased the production of viable hybrid cells from 138- to over 2800-fold depending on cell type. The results suggest that the procedure may have broad application in promoting the fusion of cells sensitive to PEG. Clones were analyzed for isozymes of malic enzyme and glucose-6-phosphate dehydrogenase. The expression of the gene encoding X-linked mouse glucose-6-phosphate dehydrogenase confirmed that the cells were hybrids. These cells lost other mouse isozymes rapidly. In those clones in which the mouse malic enzyme gene was expressed, the product ofMod-1 α was detected significantly more frequently than that ofMod-1 b.  相似文献   

3.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

4.
We have previously identified an Msp I site at the 5′ end of the rat albumin gene whose undermethylation is necessary but not sufficient for stable albumin expression in rat hepatoma cells [1]. We have also shown that the extinction of albumin expression in somatic hybrids is not the result of methylation at this site, since for two different crosses, rapid extinction was found to occur in the absence of any de novo methylation of the previously active gene[2]. In the present study, we examine albumin expression and albumin gene methylation for independent hybrid clones isolated from crosses between albumin expressing rat hepatoma cells and cells of two different non-expressing lines. The cells from hybrid clones of both crosses are characterized by stable extinction of albumin expression. Moreover, we find that de novo methylation of the “extinguished” albumin gene can occur in somatic hybrids, but only some weeks after the gene has ceased to be expressed.  相似文献   

5.
Summary A hybrid cell line was constructed by fusion of mouse L-cells with an NIH3T3 cell line derivative containing a hybrid gene consisting of the mouse immunoglobulin kappa (IgK) variable gene promoter linked to theEscherichia coli gpt gene. Such hybrids grew to a much higher density compared to either of the parental cell lines. The utility of this cell line as a host to express foreign genes was tested by the expression of TGF-β cDNA using the cytomegalovirus promoter. The vector also contained the human dihydrofolate reductase (DHFR) gene driven by SV40 early promoter, to allow for the amplification of the transfected gene. Initial transformants, selected at 100 nM methotrexate (MTX), were subsequently selected for resistance to a higher concentration of MTX (2 μM). Such clones expressed an increased level of TGF-β when compared to the initial transformants. Both the initial transformants and the clones with the amplified DHFR gene produced TGF-β in an acid-activatable precursor form. This mouse hybrid host cell line also allowed the expression of foreign genes cloned in an eukaryotic expression vector with the mouse IgK variable region promoter and human growth hormone as the reporter gene, whereas such vectors did not function in CHO cells. The mouse hybrid cell line was also found to be capable of being used with a broad range of promoters.  相似文献   

6.
7.
We previously described RAG, a mouse adenocarcinoma cell line, as deficient for the induction of major histocompatibility (MHC) class II antigens by IFN-, but responding normally for MHC class I antigen stimulation and anti-viral protection. We had established that the fusion of RAG with various human cell lines restored the induction of MHC class II antigens, whenever the human chromosome 16 was present in somatic cell hybrids. Here we show that the RAG cell line does not exhibit any induction by IFN- ofDMA, DMB, and theinvariant chain (Ii) mRNAs, and that the induction is restored in somatic cell hybrids containing human chromosome 16. In order to define the gene (designatedF16) affected in the RAG cells, we performed a complementation analysis by fusing RAG with previously described human cell lines defective for MHC class II antigen expression (e.g., BLS cell lines), and which belong to five different complementation groups. Our data show that the resulting somatic cell hybrids present an inducible expression of mouse MHC class II antigens, Ii, DMA, and DMB. Therefore, the RAG cell line represents a yet undescribed cellular mutant affected in the expression of MHC class II antigens. In addition, we demonstrate that MHC class II antigens can be constitutively expressed in the RAG cell line when transfected with the cDNA encoding humanCIITA driven by the RSV LTR promoter. Since the complementation analysis assessed that F16 and CIITA are distinct, our data suggest that F16 is required for the expression of CIITA.  相似文献   

8.
Morphological, cytological, isozyme and chloroplast DNA analyses were used to determine possible mechanism(s) for the loss of glutamate oxaloacetate transaminase-4 (GOT-4) isozyme activity in a somatic hybrid. Plant 204-1, derived by cell fusion between tomato (Lycopersicon esculentum) andSolanum lycopersicoides, was characterized for bothGot-4 and acid phosphatase-2 (Aps-2), two isozyme loci which are closely linked (recombination 2.5 cM). This hybrid was determined to be chimeric for bothGot-4 andAps-2. TheS. lycopersicoides plant used to provide cells for the fusion was determined to be heterozygous for bothGot-4 andAps-2. Only oneS. lycopersicoides allelic form ofAps-2 andGot-4 was found in plant 204-1. This observation indicated that either the alternative copy of theS. lycopersicoides chromosome region encodingGot-4 andAps-2 is deleted or the entire chromosome is absent. Plant 204-1 was cytologically determined to be aneuploid with approximately 62 chromosomes. Sixty-two somatic hybrids of separate callus origin were analysed for GOT-4 and a high proportion (27%) lacked theS. lycopersicoides form ofGot-4. The loss of this allele and the linkedAps allele most likely occurred in the suspension culture ofS. lycopersicoides used to provide cells for fusion.  相似文献   

9.
Disc polyacrylamide gel electrophoresis (disc PAGE) analyses of chick-mouse somatic cell hybrids [LM(TK)/CRB]isolated from fusion mixtures of chick erythrocytes and thymidine (TdR) kinase-deficient mouse [LM(TK)]cells have demonstrated that the somatic cell hybrids contain only chick cytosol TdR kinase F and mouse mitochondrial TdR kinase A activities. Karyotypes were analysed by the method which sequentially reveals Q- and C-bands. Four hybrid clones contained the full complement of mouse chromosomes and 1 to 3 chick micro-chromosomes. Counterselection of the LM(TK)/CRB hybrids in 5-bromodeoxyuridine (BUdR) medium resulted in the loss of chick cytosol TdR kinase F activity and at least one of the chick chromosomes, but mouse mitochondrial TdR kinase A activity was unaffected. Unlike the LM(TK)/CRB somatic cell hybrids, the BUdR-resistant clones could not grow in HATG (hypoxanthine-aminopte-rin-thymidine-glycine) medium. The results demonstrate that: (1) the chick cytosol TdR kinase F gene is on a member of the micro-chromosomes; and (2) selection in HATG- and BUdR-containing medium involves only cytosol TdR kinase F.  相似文献   

10.
Structure and function of vav   总被引:1,自引:0,他引:1  
The proto-oncogene vav is expressed solely in cells of hematopoietic origin regardless of their differentiation lineage. However, recently an homologue of vav, which is widely expressed (vav2) has been identified. Vav is a complicated and interesting molecule that contains a number of structural features found in proteins involved in cell signaling. Vav has a leucine-rich region, a leucine-zipper, a calponin homology domain, an acidic domain, a Dbl-homology domain, a pleckstrin homology domain, a cysteine-rich domain, two Src homology 3 domains, with a proline-rich region in the amino-SH3 domain, and finally an Src homology 2 domain. These domains have been implicated in protein-protein interactions and strongly suggest that vav is involved in signaling events. vav is also rapidly and transiently tyrosine phosphorylated through the activation of multiple receptors on hematopoietic cells. Furthermore, vav is tyrosine phosphorylated upon the activation of several cytokines and growths factors. Recently, the generation of mice vav−/− showed that vav has an essential role in proliferation/activation of T and B cells. The purpose of this review is to summarize the current knowledge on vav and to evaluate the roles of vav in cellular functions.  相似文献   

11.
Comparative mapping ofIGHG,IGHM, FES,andFOS in domestic cattle   总被引:3,自引:0,他引:3  
The immunoglobulin genes have not been genetically characterized as thoroughly in cattle as in other mammals, particularly humans and mice. Comparative gene mapping in mammals suggests that the bovine immunoglobulin heavy chain genes,IGHG4 andIGHM might be syntenic with theFOS oncogene. Interestingly, however, when these genes were assigned to bovine syntenic groups utilizing a panel of bovine: hamster hybrid somatic cells,IGH genes were shown to be syntenic with theFES oncogene rather thanFOS. In this studyIGH andFES were assigned toBos taurus chromosome 21 whileFOS was assigned to chromosome 10. In addition, bovine-specific immunoglobulin-like sequences were observed in the hybrid somatic cells, and one, IGHML1, was mapped to bovine syntenic group U16. The probes used for somatic-cell mapping were also used to screen a small number of cattle of several different breeds for restriction fragment length polymorphisms.IGHG4 andIGHM were shown to be highly polymorphisms. whileFOS andFES were not. Address correspondence and offprint requests to: J. E. Womack.  相似文献   

12.
Hypoxanthine phosphoribosyltransferase–deficient (HPRT-) mouse embryonic stem (ES) cells, HM-1 cells (genotype XY), were fused with adult female DD/c mouse spleen cells. As a result, a set of HAT-resistant clones was isolated. Four hybrid clones most similar in morphology and growth characteristics to the HM-1 cells were studied in detail with respect to their pluripotency. Of these, three clones contained 41–43 chromosomes, and one clone was nearly tetraploid. All the clones had the XXY set of sex chromosomes and expressed the HPRT of the somatic partner only. The hybrid clones shared features with the HM-1 cells, indicating that they retained their pluripotent properties: (1) embryonic ECMA-7 antigen, not TROMA-1 antigen, was present in most cells; (2) the hybrid cells showed high activity of endogenous alkaline phosphatase (AP); (3) all the hybrid clones were able to form complex embryoid bodies containing derivatives of all the embryonic germinal layers; (4) the hybrid cells contained synchronously replicating X chromosomes, indicating that they were in an active state; and (5) a set of chimeric animals was generated by injecting hybrid cells into BALB/c and C57BL/6J mouse blastocysts. Evidence for chimerism was provided by the spotted coat derived from 129/Ola mice and identification of 129/Ola glucose phosphate isomerase (GPI) in many organs. Thus the results obtained demonstrated that the hybrid cells retain their high pluripotency level despite the close contact of the “pluripotent” HM-1 genome with the “somatic” spleen cell genome during hybrid cell formation and the presence of the “somatic” X chromosome during many cell generations. The presence of HPRT of the somatic partner in many organs and tissues, including the testes in chimeric animals, shows that the “somatic” X chromosome segregates weakly, if at all, during development of the chimeras. There were no individuals with the 129/Ola genotype among the more than 50 offspring from chimeric mice. The lack of the 129/Ola genotype is explained by the imbalance of the sex chromosomes in the hybrid cells rendering the passage of hybrid cell descendants through meiosis in chimeras impossible. As a result, chimeras become unable to produce gametes of the hybrid cell genotype. Mol. Reprod. Dev. 50:128–138, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Evidence is presented for the assignment of the gene for dipeptidase 2 to Mus musculus chromosome 18 by synteny testing and karyotypic analysis of Chinese hamster × mouse somatic cell hybrid clones. DIP-2 and chromosome 18 were expressed concordantly in 24/24 clones examined (ten primary clones and 14 secondary clones). Synteny testing indicated that DIP-2 was not expressed concordantly with the expression of any marker enzymes.This work was supported by NIH grant USPHS GM 09966.  相似文献   

14.
Summary A simple, yet effective selection system was used to produce fertile somatic hybrids betweenNicotiana tabacum andN. debneyi. This approach utilized transgenic antibiotic-resistantN. tabacum andN. Debneyi as donor plants for mesophyll protoplast fusions. Thirteen somatic hybrid plants were regenerated from calli capable of growth on medium containing both antibiotics. The majority of the hybrids displayed a range of leaf and floral morphologies and growth habits that were intermediate to those of the parental species, and had chromosome numbers varying from amphidiploid (2n = 96) to hypoaneuploid (2n = 60). Isoenzyme and RFLP analysis demonstrated the presence and expression of nuclear genes from both parents in all of the hybrids. Most plants are fully fertile. Thus, these plants differ from the malesterile tobacco cybrids and alloplasmic lines produced by transferring theN. debneyi cytoplasm to tobacco. A nonrandom pattern of cytoplasmic segregation in the fusion products occurred with a bias towards the presence ofN. debneyi cp and mtDNA. Evidence for the presence of rearranged or recombinant cp and mtDNA in some of the hybrids was obtained. The somatic hybrids were successfully backcrossed to theN. tabacum parent and are now being tested for immunity to black root rot, a trait specific toN. debneyi, but not existent in theN. tabacum parental line.  相似文献   

15.
Genetic control of tumorigenicity in interspecific mammalian cell hybrids.   总被引:5,自引:0,他引:5  
R Kucherlapati  S I Shin 《Cell》1979,16(3):639-648
The nature of genetic control of cellular malignancy was investigated by examining the tumorigenicity of a series of interspecific mouse-human cell hybrids in the athymic nude mouse. Two highly malignant but genetically distinct mouse cell lines, A9 and PG19, were hybridized with three normal human diploid fibroblast strains, and 19 independently arising hybrid clones were isolated. Each of these clones was capable of forming progressive lethal tumors in the nude mouse, and thus resembled the malignant parental mouse cells rather than the nonmalignant parental human cells. We failed to obtain any evidence for complete suppression of tumorigenicity in these cell hybrids. The absence of suppression was observed regardless of the extent and composition of the human chromosome complements retained in the hybrid clones; the results of detailed cytological and isoenzyme analyses would make it highly improbable that the observed lack of suppression was due to cellular selection in vivo for a more tumorigenic subpopulation in the injected hybrid cells. These data demonstrate that at least for the parental cell combinations used in this study, no human chromosome, when present singly in the mouse-human cell hybrids, can suppress the tumorigenic phenotype of the mouse cells. Our results are consistent with the view that the suppression of cellular malignancy previously demonstrated in intraspecific (mouse × mouse) somatic cell hybrids does not occur in interspecific (mouse-human) cell hybrids, or alternatively, genetic determinants located on two or more human chromosomes are required simultaneously to suppress the malignancy of the mouse cells in cell hybrids derived from malignant mouse cell and nonmalignant human cells.  相似文献   

16.
Evidence is presented for the assignment of the gene for glyoxylase I to mouse chromosome 17 using mouse × Chinese hamster somatic cell hybrids. GLO I was not expressed concordantly with any known marker enzymes which represented 11 linkage groups. The presence of chromosome 17 and expression of GLO I were concordant in 31/31 clones. GLO I is thus linked to the H-2 histocompatibility locus in the mouse.  相似文献   

17.
18.
Summary The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts.An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.A part of the results was presented at the Fifth International Conference on Human Gene Mapping, Edinburgh, July 1979 and reported as an abstract in the proceedings of this conference [Cytogenet Cell Genet 25:164 (1979)]  相似文献   

19.
Symmetric and asymmetric protoplast fusion between long term cell suspension-derived protoplasts ofTriticum aestivum (cv. Jinan 177) and protoplasts ofHaynaldia villosa prepared from one-year-old embryogeneric calli was performed by PEG method. In asymmetric fusion, donor calli were treated with gamma ray at a dose of 40, 60, 80 Gy (1.3 Gy/min) respectively and then used to isolate protoplasts. Results of morphological, cytological, biochemical (isozyme) and 5S rDNA spacer sequence analysis revealed that we obtained somatic hybrid lines at high frequency from both symmetric and asymmetric fusion. Hybrid plants were recovered from symmetric and low dose γ-fusion combinations. GISH (genomicin situ hybridization) analysis proved exactly the existence of both parental chromosomes and the common occurrence of several kinds of translocation between them in the hybrid clones regenerated from symmetric and asymmetric fusion. And the elimination of donor DNA in hybrid clones regenerated from asymmetric fusion combinations was found to increase with the increasing gamma doses. It is concluded that transference and recombination of nuclear DNA can be achieved effectively by symmetric and asymmetric fusion, hybrids with small fragment translocation which are valuable in plant breeding can be obtained directly by asymmetric fusion.  相似文献   

20.
The LEW.1LM1 inbred rat strain, which has been derived from a (LEW×LEW.1W) F2 hybrid, carries a major histocompatibility (RT1) haplotype which is distinct from that of the LEW strain (RT1 1) in that certainRT1.C region-determined class I antigens are not expressed. Here we show that this phenotypic defect is due to genomic deletion of about 100 kb of theRT1.C region. Certain deleted DNA fragments have been cloned from the wild-type DNA into the EMBL4 vector. Five clones have been characterized and are shown to possess different restriction maps and to each carry a single stretch of class I cross-hybridizing sequences. Probes derived from the non-class I coding part of two clones detect fragments which are present in the wild-type but absent from thelm1 mutant. The type of deletion described here in the rat is discussed in the context ofH-2D/Q deletions in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号