首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, we used classical genetics in zebrafish to identify temperature-sensitive mutants in caudal fin regeneration. Gross morphological, histological, and molecular analyses revealed that one of these strains, emmental (emm), failed to form a functional regeneration blastema. Inhibition of emm function by heat treatment during regenerative outgrowth rapidly blocked regeneration. This block was associated with reduced proliferation in the proximal blastema and expansion of the nonproliferative distal blastemal zone. Positional cloning revealed that the emm phenotype is caused by a mutation in the orthologue of yeast sly1, a gene product involved in protein trafficking. sly1 is upregulated in the newly formed blastema as well as during regenerative outgrowth. Thus, sly1 is essential for blastemal organization and proliferation during two stages of fin regeneration.  相似文献   

2.
Summary Regenerating tails and limbs of axolotl larvae (A. mexicanum) were studied for overall growth and for mitosis after the animals received intraperitoneal injections of all-trans retinoic acid. Both processes were depressed to approximately the same extent (60–70%). Some mitosis always survived, even when the treatment was in effect during the entire history of the regenerate. The treatment duration was a major variable in the severity of the effect, whereas the post-amputation age of the regenerate was not. In limb regenerates the epithelial cap and the mesenchymal blastema were affected to roughly the same degree.Supported by PHS Grant 507RR7031H of the BMRG, Indiana University  相似文献   

3.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells fromAgrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.  相似文献   

5.
Summary Fine structural observations were made on the vesicle and granule content of ganglion cells in the posterior subclavian ganglion and peripheral nerve fibers of the upper forelimb of the newt Triturus. The populations of vesicles and granules in normal ganglion cells and nerve fibers were compared with those observed after limb transection. In normal neurons, clear vesicles range in size from 250 to 1000 Å in diameter, but are most frequently 400–500 Å. Vesicles with dense contents (granules) also vary greatly in size, but most are 450–550 Å in diameter and correspond to dense-core vesicles. Large granules that contain acid phosphatase activity are thought to be lysosomes. During limb regeneration, in both the ganglion cells and peripheral nerves, the ratio of dense vesicles to clear vesicles increases. There is a large increase in number of dense granules with a diameter over 800 Å, particularly in the peripheral regenerating fibers. This study shows that regenerating neurons differ from normal in their content of vesicular structures, especially large, membrane-bounded granules.This work was supported by grants from the National Science Foundation (GB 7912) and from the National Cancer Institute (TICA-5055), National Institutes of Health, United States Public Health Service.  相似文献   

6.
In zebrafish, mutations in the gap junction gene connexin43 lead to short bony fin ray segments that give rise to the short fin phenotype. The sofb123 mutant exhibits fins that are half the length of wild-type fins and have reduced levels of cx43 mRNA. We find that sofb123 regenerating fins exhibit reduced levels of cell proliferation. Interestingly, the number of dividing cells per unit length of fin growth is similar between wild-type and mutant fins, suggesting that the number of cells that enter the cell cycle is specifically affected in sofb123. Expression of cx43 is identified in mitotic cells, which further suggests that Cx43 may contribute to establishing or maintaining the population of dividing cells. Indeed, missense alleles exhibiting high or low levels of gap junctional communication reveal a correlation between defects in direct cell-cell communication, cell proliferation, and segment length. Finally, targeted gene knockdown of cx43 in adult regenerating fins recapitulates the sofb123 phenotype, revealing that the loss of Cx43 is sufficient to reduce both cell proliferation and segment length. We hypothesize that the level of gap junctional intercellular communication among dividing cells regulates the level of cell proliferation and ultimately regulates bone growth.  相似文献   

7.
Summary Recent advances in plant molecular biology have depended largely on the development of efficient methods of introducing foreign DNA into plant cells. Gene transfer into plant cells can be achieved by either direct uptake of DNA or the natural process of gene transfer carried out by the soil bacteriumAgrobacterium. Although both of these processes allow the generation of stably transformed plants, the former offers the advantage of allowing the study of transient expression of gene constructs in protoplasts cultured in vitro. In addition to the potential application of transgenic plants in agriculture and biotechnology they can be used to study the expression of foreign DNA, to carry out the functional analysis of plant DNA sequences, to investigate the mechanism of viral DNA replication and cell-to-cell spread, as well as to study transposition. Moreover, the versatility of the gene transfer vectors is such that they may be used to isolate genes unamenable to isolation using conventional protocols. Presented in the Formal Symposium Frontiers in Cell Biotechnology at the 41st Annual Meeting of the Tissue Culture Association, Houston, Texas, June 10–13, 1990.  相似文献   

8.
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host–parasite interactions at the cellular level.  相似文献   

9.
Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters (“cardiogenic clusters”) that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.  相似文献   

10.
Summary Promeristematic cells of theCystoseira thallus have been studied by transmission electron microscopy and cytochemistry in order to observe vacuole formation and development.Vacuolation seems to occur by different processes. Those here concerned involve the intervention of provacuolar formations, originating probably from G.E.R.L., in the sequestration of cytoplasmic materials. The sequestrated portion then undergoes a degradation. These observations agree with the processes recently reported in root meristematic cells of two higher plants:Euphorbia characias andHordeum sativum.  相似文献   

11.
Understanding the links between developmental patterning mechanisms and force-producing cytoskeletal mechanisms is a central goal in studies of morphogenesis. Gastrulation is the first morphogenetic event in the development of many organisms. Gastrulation involves the internalization of surface cells, often driven by the contraction of actomyosin networks that are deployed with spatial precision—both in specific cells and in a polarized manner within each cell. These cytoskeletal mechanisms rely on different cell fate and cell polarity regulators in different organisms. Caenorhabditis elegans gastrulation presents an opportunity to examine the extent to which diverse mechanisms may be used by dozens of cells that are internalized at distinct times within a single organism. We identified 66 cells that are internalized in C. elegans gastrulation, many of which were not known previously to gastrulate. To gain mechanistic insights into how these cells internalize, we genetically manipulated cell fate, cell polarity and cytoskeletal regulators and determined the effects on cell internalization. We found that cells of distinct lineages depend on common actomyosin-based mechanisms to gastrulate, but different cell fate regulators, and, surprisingly, different cell polarity regulators. We conclude that diverse cell fate and cell polarity regulators control common mechanisms of morphogenesis in C. elegans. The results highlight the variety of developmental patterning mechanisms that can be associated with common cytoskeletal mechanisms in the morphogenesis of an animal embryo.  相似文献   

12.
The zonal geranium (Pelargonium xhortorum) possesses tall glandular trichomes that secrete anacardic acids, a viscous, sticky exudate which has been suggested as the primary mechanism in two-spotted spider mite (Tetranychus urticae Koch) resistance. A new bioassay was developed using small Plexiglas® cylinders as chambers for evaluating the resistance of geranium leaves to the two-spotted spider mite. This bioassay was easy to prepare, required only 24 hours to conduct, exhibited no problems with desiccation, condensation, or mite accountability, and yielded reproducible results. This bioassay was then used to study the regeneration of resistance of attached geranium leaves after they were made mite-susceptible by removing the excreted anacardic acids with water. Washed leaves regained full resistance after 14 days.  相似文献   

13.
Summary A unique form of cell division is reported for the cellsKomma caudata andCryptomonas ovata (Cryptophyceae). During cytokinesis, the posterior tail-like region of each daughter cell develops from the anterior region of the parental cell. This process, termed pole reversal, involves a major realignment in overall cell polarity as well as alterations to cytoplasmic and surface components. Pole reversal may be a consequence of flagellar apparatus transformation and reorientation during division, and pole reversal may facilitate the development of the asymmetric cell shape in daughter cells.  相似文献   

14.
Summary At hatching, the hermaphrodite duct of Deroceras reticulatum consists of a single cell type designated the Gonadal Stem Cell (GSC). Proliferation of the GSC leads to the formation of numerous ductules each of which forms one of the acini of the gonad. The germinal and supporting cells are derived entirely from the GSC. The germ cells differentiate first, followed by the Sertoli and follicle cells. At the early sperm stage of gonadal development the hermaphrodite duct differentiates to function as a seminal vesicle. Once the GSC are committed to this change they lose their regenerative ability. The only remaining GSC are the cells of the acinar epithelium, and these retain their germinal potential until the death of the animal.Regeneration will occur from the hermaphrodite duct provided it is in the immature state, i.e., composed of GSC, and is exposed to the hormonal conditions of a young animal. Nervous connections and the presence of an artery are not necessary for this regeneration. The presence of a functional gonad does not inhibit regeneration.  相似文献   

15.
A PCR assay has been developed based on a lolB (hemM) gene, which was found to be highly conserved among the Vibrio cholerae species but non-conserved among the other enteric bacteria. The lolB PCR detected all O1, O139 and non-O1/non-O139 serogroup and biotypes of V. cholerae. The analytical specificity of this assay was 100% while the analytical sensitivity was 10 pg/microL and 10(3) CFU/mL at DNA and bacterial level respectively. The diagnostic sensitivity and specificity was 98.5% and 100% respectively.  相似文献   

16.
17.
This study sought to compare the effects of age and gender on blood viscosity and to appraise the effectiveness of Ginkgo biloba and Allium sativum extracts in reducing blood viscosity. Stage 1: Our sample consisted of 80 male volunteers (40 aged 18-60 and 40 aged 61 and over) and 80 females with the same age profile. Stage 2: We studied 60 male volunteers allocated in groups: placebo, G. biloba, and A. sativum. Stage 3: We studied 25 male volunteers and in the initial, intermediate, and final evaluations, the measures of blood viscosity were repeated. Volunteers were given a clinical evaluation and submitted to laboratory tests. G. biloba led to the highest reduction in blood viscosity compared with placebo and A. sativum. In relation to the use of the two substances, G. biloba and A. sativum, dry extract of G. biloba proved to be more effective in reducing blood viscosity.  相似文献   

18.
The existence of a relationship between the spatial pattern of trees and the distribution of young individuals beneath the canopy has been tested in the beech (Fagus sylvatica) and spruce (Picea abies) — fir (Abies alba) forests in the mountainous region, using two different methods. The first method was the analysis of spatial pattern of individuals, the second one was based on calculating sums of influences of all trees occurring within analysed plot on a given point on the forest floor. Results of spatial pattern analyses were surprisingly consistent: almost all mature trees and seedlings didplayed a random pattern of spatial arrangement. However, there is a clear, although statistically insignificant tendency towards uniformity of spatial pattern with increasing sizes of analysed trees. Results of comparing sums of influences on regularly distributed points with sums of influences on seedlings or saplings revealed no tendency in forest regeneration to concentrate in places, where the sums were smaller than the average for a plot. This, coupled with the dominance of random spatial pattern of trees, suggests, that viewed on a small spatial scale, influence of competition among forest trees on their spatial arrangement is obscured by other factors, which are not closely related to the distribution of individuals.  相似文献   

19.
Our previous study revealed that, when exposed to light from below, fruit-bodies of humus-borne agarics grow straight downward both in the ‘Coprinus Type’ and ’Non-Coprinus Type’ species and that, in the latter, gills tilt by gravitropism, caps swell and wave, and stipes twist. The present study revealed that fruit-bodies of some lignicolous agarics also grew straight downward. Among themFlammulina velutipes andHypsizygus marmoreus fruit-bodies showed almost the same behaviour as the ‘Non-Coprinus Type’, butPleurotus ostreatus (assumedPolyporus Type) fruit-bodies did not show the gill tilting and cap waving. Rather, it redifferentiated to produce new gills or new fruit-bodies, possibly by gravimorphogenesis, or formed spiral stipes. Based on these results, graviresponses in hymenomycetes are overviewed.  相似文献   

20.
Summary This review paper describes the importance of synchronous cell cultures as experimental systems for investigations of mechanisms of the cell cycle of higher plants, and various methods of synchronization are discussed. The efficient synchronization methods were double phosphate starvation in Catharanthus roseus cells and aphidicolin treatment in tobacco cells. Using these systems, cell cycle-dependent genes were isolated and characterized. One of them, cyc07, was investigated in detail and the possible function of cyc07 is discussed as an example of genes involved in the progression of the cell cycle of higher plants. Finally, a perspective of investigations of the cell cycle of higher plant cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号