首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a simple method for extracting homovanillic acid (HVA) from plasma. An aliquot of 0.5 ml of the internal standard solution (3-hydroxy-4-methoxycinnamic acid in 0.2 mol/l phosphoric acid) and 0.5 ml of the sample are applied to a 1-ml Bond Elut C18 column prewashed with methanol and 0.2 mol/l phosphoric acid. The sample is drawn through the column at low speed. The column is washed with water and eluted with dichloromethane. The eluate is evaporated under vacuum at ambient temperature and the residue reconstituted with 250 μl of the mobile phase. A 10-μl aliquot of the resulting solution is injected onto a 150 mm × 4.6 mm I.D. column packed with 5-μm octadecylsilyl silica particles (Beckman). Peaks are detected coulometrically in the screening-oxidation mode with E1 = +0.25 V and E2 = +0.38 V. In the resulting chromatogram, HVA and the internal standard give sharp peaks and are well separated from solvent and other endogenous electroactive acids. The extraction recovery is 90–95% which allows the determination of 0.5 μg/l analyte.  相似文献   

2.
A liquid chromatographic system consisting of a co-immobilized 3-hydroxybutyrate dehydrogenase-NADH oxidase reactor and an immobilized pyranose oxidase reactor in series and a chemiluminometer was developed for the simultaneous determination of glucose, 1,5-anhydroglucitol and 3-hydroxybutyrate in plasma. The enzymes were immobilized on toresylated poly(vinyl alcohol) beads. Separation was achieved on a TSK gel SAX column (40×4 mm I.D.) with an eluent of 50 mM NaOH containing 30 mM sodium butyrate. The hydrogen peroxide produced was detected by measuring the chemiluminescence emitted on admixing with luminol and potassium hexacyanoferrate(III). The calibration curves were linear from 0.8 to 500 μM (7 ng−4 μg) for glucose, from 0.8 to 400 μM (7 ng−3 μg) for 1,5-anhydroglucitol and from 1 to 700 μM (5 ng−4 μg in a 50-μl injection) for 3-hydroxybutyrate. The sample throughput was four per hour. The reactors were stable for at least ten days.  相似文献   

3.
A 0.5-ml aliquot of a serum sample, after the addition of a 100-μl aliquot of a 5 μg/ml solution of dibucaine as the internal standard, is vortex-mixed with 0.5 ml of acetonitrile and centrifuged. The supernatant is applied to a 1-ml BondElut C18 silica extraction column conditioned with subsequent washings with 1 M HCl, methanol and water. After passing the sample at a slow rate, the column is washed twice with water and once with acetonitrile. The desired compounds are then eluted with a 0.25-ml aliquot of 35% perchloric acid—methanol (1:40, v/v). A 7-μl aliquot of the eluate is injected onto a 150 × 4.6 mm I.D. column packed with 5-μm C8 silica particles and eluted at ambient temperature with a mobile phase of 10 mM phosphate buffer-acetonitrile (2:1, v/v) (pH 3.2). The peaks are detected with a fluorescence detector (excitation at 295 nm, emission at 365 nm). The resulting chromatogram is clean with no extraneous peaks. Paroxetine and dibucaine give sharp peaks which are well separated from each other and from the solvent peaks. The extraction recovery of the drug and the internal standard is in the range of 90% which allows a highly sensitive determination of paroxetine.  相似文献   

4.
We report a very rapid and simple isocratic reversed-phase HPLC separation of malondialdehyde (MDA) in normal human plasma without previous purification of the MDA–2-thiobarbituric acid (TBA) complex. The separation of MDA–TBA complex was performed using a 250×4.6 mm Nucleosil-5C18 column with a mobile phase composed of 35% methanol and 65% 50 mM sodium phosphate buffer, pH 7.0. Samples of 50 μl (composed of 100 μl plasma mixed with 1.0 ml of 0.2% 2-thiobarbituric acid in 2 M sodium acetate buffer containing 1 mM diethylenetriaminepentaacetic acid, pH 3.5, and 10 μl of 5% 2,6-di-tert.-butyl-4-methylphenol in 96% ethanol, incubated at 95°C for 45 min [K. Fukunaga, K. Takama and T. Suzuki, Anal. Biochem., 230 (1995) 20] were injected into the column. The MDA–TBA complex was eluted at a flow-rate of 1 ml/min and monitored by fluorescence detection with excitation at 515 nm and emission at 553 nm. Analysis of groups of normal male and female volunteers gave plasma levels of MDA of 1.076 nmol/ml with a coefficient of variation of about 58%. No significant statistical differences were found between male and female groups, and no correlation was discovered on the age.  相似文献   

5.
An isocratic high-performance liquid chromatographic method with column switching and direct injection has been developed to determine ciprofloxacin in plasma and Mueller–Hinton broth. An on-line dilution of the sample was performed with a loading mobile phase consisting of 173 mM phosphoric acid. The analyte was retained on a LiChrocart 4-4 precolumn filled with a LiChrospher 100 RP18, 5 μm. An electric-actuated system with two six-port valves allowed a clean-up step with a mixture 20 mM phosphate buffer (pH 3.5)–methanol (97: 3, v/v) and the transfer of the analyte by a back-flush mode to a 150×4.6 mm I.D. column packed with a Kromasil C8 5 μm, using a mobile phase of 20 mM phosphate buffer (pH 3.5)–acetonitrile (85:15, v/v). Fluorescence detection allowed a quantification limit of 0.078 μg/ml with a 40-μl sample size. The method was evaluated to determine its usefulness in studying the pharmacokinetic/pharmacodynamic behaviour of ciprofloxacin in an in vitro model.  相似文献   

6.
A reversed-phase column liquid chromatographic procedure with fluorescence detection for the determination of salbutamol in plasma is described. A 1-ml aliquot of the sample, after the addition of bamethan as the internal standard, is passed through a Bond Elut silica extraction column. The column is selectively washed to remove neutral, acidic, and weakly basic compounds. The desired compounds are eluted with a 1-ml aliquot of methanol. The eluate is evaporated under vacuum at ambient temperature and the residue is reconstituted in 40 μl of the mobile phase which contains octanesulfonic acid as the ion-pairing reagent. The entire extract is injected onto a 150 × 4.6 mm I.D. column packed with 5-μm octylsilica particles. Peaks are detected with a fluorescence detector (excitation WAVELENGTH = 275 nm, emission WAVELENGTH = 310 nm). In the resulting chromatogram, salbutamol and the internal standard give sharp peaks that are well resolved from the extraneous peaks. The procedure allows the quantitation of salbutamol down to 0.2 ng/ml.  相似文献   

7.
A simple procedure for the simultaneous determination of modafinil, its acid and sulfone metabolites in plasma is described. The assay involved an extraction of the drug, metabolites and internal standard from plasma with a solid-phase extraction using C18 cartridges. These compounds were eluted by methanol. The extract was evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was redissolved in 250 μl of mobile-phase and a 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile-phase (26%, v/v acetonitrile in 0.05 M orthophosphoric acid buffer adjusted to pH 2.6) at a flow-rate of 1.1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 225 nm. Intra-day coefficients of variation ranged from 1.0 to 2.9% and inter-day coefficients from 0.9 to 6.1%. The limits of detection and quantitation of the assay were 0.01 μg/ml and 0.10 μg/ml respectively.  相似文献   

8.
A 100-μl volume of urine was chromatographed on a 50 × 0.4 cm I.D. column packed with a macroreticular anion-exchange resin. Elution was performed with a concave ammonium perchlorate gradient from 0 to 0.25 M at a flow-rate of 0.75 ml/min and a pressure of 7.5–11 MPa. With this perchlorate gradient, no baseline drift occurred in the detection at 254 nm, and even detection at 200 nm was possible. The effect of the addition of ethanol or acetonitrile to the ammonium perchlorate solution was investigated. For the assignment of peaks, ultraviolet spectra of the peaks were measured with stopped-flow scanning spectrophotometry.  相似文献   

9.
This study describes a sensitive HPLC–electrochemical detection method for the analysis of ceftazidime, a third-generation cephalosporin, in human plasma. The extraction procedure involved protein precipitation with 30% trichloroacetic acid. The separation was achieved on a reversed-phase column (250×4.6 mm I.D., 5 μm) packed with C18 Kromasil with isocratic elution and a mobile phase consisting of acetonitrile–25 mM KH2PO4–Na2HPO4 buffer, pH 7.4 (10:90, v/v). The proposed analytical method is selective, reproducible and reliable. The assay has a precision of 0.2–15.1% (C.V.) in the range of 5–200 μg ml−1. (corresponding to 0.5 to 20 ng of ceftazidime injected onto the column), and is optimised for assaying 50 μl of plasma. The extraction recovery from plasma was approximately 100%. The method was highly specific for ceftazidime and there was no interference from either commonly administered drugs or endogenous compounds. This assay was used to measure ceftazidime in elderly patients for therapeutic drug monitoring.  相似文献   

10.
A method is described for the analysis of amino acids, monoamines and metabolites by high-performance liquid chromatography with electrochemical detection (HPLC–ED) from individual brain areas. The chromatographic separations were achieved using microbore columns. For amino acids we used a 100×1 mm I.D. C8, 5 μm column. A binary mobile phases was used: mobile phase A consisted of 0.1 M sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (69:24:7, v/v) and mobile phase B consisted of sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (15:45:40, v/v). The flow-rate was maintained at 150 μl/min. For monoamines and metabolites we used a 150×1 mm I.D. C18 5 μm reversed-phase column. The mobile phase consisted of 25 mM monobasic sodium phosphate, 50 mM sodium citrate, 27 μM disodium EDTA, 10 mM diethylamine, 2.2 mM octane sulfonic acid and 10 mM sodium chloride with 3% methanol and 2.2% dimethylacetamide. The potential was +700 mV versus Ag/AgCl reference electrode for both the amino acids and the biogenic amines and metabolites. Ten rat brain regions, including various cortical areas, the cerebellum, hippocampus, substantia nigra, red nucleus and locus coeruleus were microdissected or micropunched from frozen 300-μm tissue slices. Tissue samples were homogenized in 50 or 100 μl of 0.05 M perchloric acid. The precise handling and processing of the tissue samples and tissue homogenates are described in detail, since care must be exercised in processing such small volumes while preventing sample degradation. An aliquot of the sample was derivatized to form the tert.-butylthiol derivatives of the amino acids and γ-aminobutyric acid. A second aliquot of the same sample was used for monamine and metabolite analyses. The results indicate that the procedure is ideal for processing and analyzing small tissue samples.  相似文献   

11.
We describe in this report a sensitive and direct method for the analysis of tamoxifen (TAM) in microsamples of plasma. The drug and internal standard (quinine bisulfate, I.S.) were separated on a 10-μm particle, 10 cm × 8 mm CN cartridge in conjuction with a radial compression system. The mobile phase was a mixture of 0.1 M sodium acetate in 0.001 M tetrabutylammonium phosphate solution (pH 6) and methanol (30:70, v/v) at a flow-rate of 4 ml/min. After addition of I.S. and o-phosphoric acid in acetonitrile (0.6 M) to the plasma (30 μl), the mixture was placed in an ultraviolet shortwave transluminator for 2 min prior to injection into the chromatograph. The compounds were detected in the effluent fluorometrically at excitation and emission wavelengths of 258 and 378 nm, respectively. Under these conditions, no interference in the assay from any endogenous substance or other concurrently used drugs was observed and the retention times of I.S. and TAM were 4.4 and 10.15 min, respectively. The concentration of TAM in plasma was linearly (r>0.9983) related to the peak height ratio (TAM/I.S.) in the range 0.01–2.0 μg ml−1 and C.V. at 0.075, 0.4 and 1.2 μg ml−1 was 4.96%. We are currently using this assay for monitoring TAM in plasma and investigating its pharmacokinetics in cancer patients receiving cytotoxic drugs in addition to TAM as a multi-drug resistance modifier.  相似文献   

12.
Measurement of nitrite and nitrate, the stable oxidation products of nitric oxide (NO), provides a useful tool to study NO synthesis in vivo and in cell cultures. A simple and rapid fluorometric HPLC method was developed for determination of nitrite through its derivatization with 2,3-diaminonaphthalene (DAN). Nitrite, in standard solution, cell culture medium, or biological samples, readily reacted with DAN under acidic conditions to yield the highly fluorescent 2,3-naphthotriazole (NAT). For analysis of nitrate, it was converted to nitrite by nitrate reductase, followed by the derivatization of nitrite with DAN to form NAT. NAT was separated on a 5-μm reversed-phase C8 column (150×4.6 mm, I.D.) guarded by a 40-μm reversed-phase C18 column (50×4.6 mm, I.D.), and eluted with 15 mM sodium phosphate buffer (pH 7.5) containing 50% methanol (flow-rate, 1.3 ml/min). Fluorescence was monitored with excitation at 375 nm and emission at 415 nm. Mean retention time for NAT was 4.4 min. The fluorescence intensity of NAT was linear with nitrite or nitrate concentrations ranging from 12.5 to 2000 nM in water, cell culture media, plasma and urine. The detection limit for nitrite and nitrate was 10 pmol/ml. Because NAT is well separated from DAN and other fluorescent components present in biological samples, our HPLC method offers the advantages of high sensitivity and specificity as well as easy automation for quantifying picomole levels of nitrite and nitrate in cell culture medium and biological samples.  相似文献   

13.
A gas chromatographic method for the sensitive determination of midazolam in plasma volumes as low as 40 μl was developed, utilizing clinazolam as the internal standard. After liquid-liquid extraction at basic pH into 1-chlorobutane-dichloromethane (96:4) a 2- to 4-μl portion of the reconstituted extract was injected under electronic pressure control onto a 12 m × 0.2 mm I.D. methyl silicone capillary column, and was exposed to a three-step temperature program from 120 to 310°C, to separate the analytes from the plasma constituents. The compound of interest was identified and quantified by means of a mass-selective detector. The assay was linear from 10 to 500 ng/ml using 40 μl of plasma (limit of quantification: 10 ng/ml) and was linear from 0.25 to 100 ng/ml using 500 μl of plasma (limit of quantification: 0.25 ng/ml). The intra-day precision for the 40-μl aliquots varied from 2.2 to 6.6%, the corresponding accuracy from −7.4 to −4.4%; the inter-day precision ranged from 5 to 7.2% and the corresponding accuracy from −7.2 to −5.1%.  相似文献   

14.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

15.
A simple, HPLC method was developed to estimate meloxicam (COX-2 inhibitor) using piroxicam as the internal standard. The mobile phase containing methanol, acetonitrile and an aqueous solution of diammonium hydrogenorthophosphate (50 mM) in the ratio of 4:1:5 was pumped at the rate 1 ml/min. Lichrocart RP-18 (125×4 mm) was used as an analytical column and the analytes were detected at 364 nm using a UV detector. Acidified plasma samples were extracted with chloroform, evaporated to dryness, reconstituted in the mobile phase and then a volume of 10 μl of the prepared sample was injected in the column. The retention time of meloxicam and piroxicam was found to be 2.7 and 1.9, respectively. This method showed an accuracy of 102.3% at 0.52 μg/ml and was capable of detecting a minimum concentration of 0.029 μg/ml meloxicam from biological samples. The analytical method was successfully utilized for estimating meloxicam in biological samples.  相似文献   

16.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of a new oral thrombin inhibitor (compound I) in the blood of rats and dogs. The analyte was deproteinized with a 1.5 volume of methanol and a 0.5 volume of 10% zinc sulfate, and the supernatant was injected into a 5-μm Capcell Pak C18 column (150×4.6 mm I.D.). The mobile phase was a mixture of acetonitrile and 0.2% triethylamine of pH 2.3 (31:69, v/v) with a flow-rate of 1.0 ml/min at UV 231 nm. The retention time of compound I was approximately 9.3 min. The calibration curve was linear over the concentration range of 0.05–100 mg/l for rat blood (r2>0.9995, n=6) and dog blood (r2>0.9993, n=6). The limit of quantitation was 0.05 mg/l for both bloods using a 100-μl sample. For the 5 concentrations (0.05, 0.1, 1, 10, and 100 mg/l), the within-day recovery (n=4) and precision (n=4) were 98.1–104.1% and 1.5–6.8% for rat blood and 95.4–105.7% and 1.4–5.3% for dog blood, respectively. The between-day recovery (n=6) and precision (n=6) were 99.8–105.3% and 3.7–12.6% for rat blood and 87.5–107.1% and 2.9–15.3% for dog blood, respectively. The absolute recoveries were 82.4–93.3%. No interferences from endogenous substances were observed. In conclusion, the presented simple, sensitive, and reproducible HPLC method proved and was used successfully for the determination of compound I in the preclinical pharmacokinetics.  相似文献   

17.
A sensitive and quantitative reversed-phase HPLC method for the analysis of -sotalol in human atria, ventricles, blood and plasma was developed. Sotalol was determined in about 100 mg of human right atria, left ventricles, and in 500 μl of blood and plasma samples of patients undergoing coronary bypass surgery or heart transplantation. Patients were taking 80–160 mg of sotalol as an antiarrhythmic agent. Atenolol was used as an internal standard certifying high precision of measurement. Sotalol blood and plasma concentrations correlated linearly to the obtained signals from 26.5 ng/ml to 2.12 μg/ml. Sotalol tissue concentrations showed linearity between 0.27 ng/mg and 10.6 ng/mg wet weight. The limit of quantitation was 0.27 ng/mg at a signal-to-noise ratio of 10. Sotalol was extracted from homogenized tissue with a buffer solution (pH 9) and the remaining pellet was extracted with methanol. The methanol extract was evaporated under nitrogen and reconstituted in buffer (pH 3). The whole extract was cleaned by solid-phase column extraction, eluted with methanol, evaporated again, reconstituted in the mobile phase (acetonitrile-15 mM potassium phosphate buffer pH 3, 17:83, v/v) and injected onto the HPLC column (Spherisorb C6 column, 5 μm,, 150×4.6 mm I.D). For the detection of sotalol, the UV wavelength was set to 230 nm. Recoveries of sotalol and atenolol in atria and ventricles were 65.6 and 75.0%, respectively. Intra- and inter-assay coefficients of variation for tissue concentrations were 3.38 and 6.14%, respectively. Intra- and inter-assay accuracy for determined tissue sotalol concentrations were 94.9±6.3 and 99.6±4.1%.  相似文献   

18.
Summary Mead was produced by immobilized cells of Hansenula anomala in calcium alginate gels. The immobilized cell beads of 3 mm diameter packed in column reactors of dimensions 2.2x60, 4x40 and 8x80 cm, produced mead containing maximum concentrations of ethanol and ethyl acetate of 70 g/l and 730 mg/l, respectively at a dilution rate of 0.1 h–1. The maximum alcohol productivity achieved was 23.1 g/l·h at a dilution rate of 0.33 h–1. With intermittent regenerations of the cells the reactor operated continuously for 110 days. This process enables the quick production of matured mead by a single culture and the elimination of the traditionally used long aging periods.  相似文献   

19.
An isocratic liquid chromatographic method with electrochemical detection for the determination of

-3,4-dihydroxyphenylalanine, dopamine, norepinephrine, epinephrine, serotonin, and their major metabolites, 3,4-dihydroxyphenylacetic acid, 4-hydroxy-3-methoxyphenylacetic acid and 5-hydroxyindole-3-acetic acid in chicken brain tissue is described. Chickens were killed at different ages, the brains were quickly frozen and 300-μm cryostat sections were made. From these sections, two to six tissue micropunches (1 mm in diameter) were punched out from 20 different areas of the hypothalamus and homogenated in 100 μl 0.1 M perchloric acid which included 0.01% cysteine as antioxidant. Fifty-μl supernatants were injected directly onto the LC system, separated on a 3-μm Phase II ODS column (100×3.2 mm I.D.) and detected by an electrochemical detector at a potential of +0.75 V. Standard curves, recoveries, analytical precision and detection limits were investigated for each monoamine neurotransmitter and its metabolites. The method was applied to study the influence of food restriction on the concentration of monoamine neurotransmitters in different brain areas, known to be involved in feeding and reproductive behaviour of female broiler chickens. Over 1000 micropunched tissue samples from ad libitum fed and food-restricted female broiler chickens were analyzed. Our results provide a possible role for catecholamines and indolamines in the altered feeding and reproductive behaviour of the broiler chicken.  相似文献   

20.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of LB71350 in the plasma of dogs. The analyte was deproteinized with 1.5 volumes of methanol and 0.5 volumes of 10% zinc sulfate, and the supernatant was injected into a 5-μm Capcell Pak C18 column (150×4.6 mm I.D.). The mobile phase was a stepwise gradient mixture of acetonitrile and 0.2% triethylamine–HCl with a flow-rate of 1 ml/min and detection at UV 245 nm. The proportion of acetonitrile was kept at 52% for the first 6 min, increased to 100% for the next 0.5 min, kept at 100% for the next 2 min, decreased to 52% for the next 0.5 min, and finally kept at 52% for the next 7 min. The retention time of LB71350 was 6.9 min. The calibration was linear over the concentration range of 0.1–100 mg/l for dog plasma (r>0.997) and the limit of quantitation was 0.1 mg/l using 0.1 ml plasma. The quality control samples were reproducible with acceptable accuracy and precision at 0.1, 1, 10 and 100 mg/l concentrations. The within-day recovery (n=5) was 90.2–93.9%, the between-day recovery (n=5) was 89.5–93.5%, and the absolute between-day recovery (n=5) was 77–81%. The within-day precision (n=5) and between-day precision (n=5) were 2.59–5.82% and 3.17–4.55%, respectively. No interferences from endogenous substances were observed. Taken together, the above HPLC assay method by deproteinization and UV detection was suitable for the determination of LB71350 in the preclinical pharmacokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号