首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Analysis of trp repressor-operator interaction by filter binding.   总被引:6,自引:1,他引:5       下载免费PDF全文
A filter binding assay was developed that allows measurement of specific binding of trp repressor to operator DNA. The most important feature of this procedure is the concentration and type of salt present in the binding buffer. Using this assay the dissociation constant of the repressor-operator complex was determined to be 2.6 X 10(-9) M, and 1.34 repressor dimers were found to be bound to each operator-containing DNA molecule. These values agree with those obtained by more complex methods. The dissociation constant of the repressor for the corepressor L-tryptophan in the presence of operator DNA was shown to be 2.5 X 10(-5) M. A synthetic 48 bp operator fragment was used to determine the repressor-operator dissociation constant in the presence of tryptophan or tryptophan analogs which have higher or lower affinities for aporepressor. The rate of dissociation of repressor from operator DNA also was determined. Our findings indicate that dissociation is influenced by the concentration of tryptophan or tryptophan analogs and suggest that release of the corepressor may be the first step in dissociation of the repressor-operator complex.  相似文献   

3.
The 3-dimensional structure of the trp repressor, aporepressor, and repressor/operator complex have been described. The NH2-terminal arms of the protein, comprising approximately 12-14 residues, were not well resolved in any of these structures. Previous studies by Carey showed that the arms are required for full in vitro repressor activity. To examine the roles of the arms more fully we have removed codons 2-5 and 2-8 of the trpR gene and analyzed the resulting truncated repressors in vivo and in vitro. The delta 2-5 trp repressor was found to be approximately 25% as active as the wild type repressor in vivo. In in vitro equilibrium binding experiments, the delta 2-5 trp repressor was shown to be five-fold less active in operator binding. The rate of dissociation of the complex formed between the delta 2-5 trp repressor and operator was essentially the same as the rate of dissociation of the wild type trp repressor/operator complex. However association of the delta 2-5 trp repressor with operator was clearly defective. Since the NH2-terminal arms of the trp repressor appear to affect association predominantly they may play a role in facilitating non-specific association of repressor with DNA as repressor seeks its cognate operators. The delta 2-8 trp repressor was unstable in vivo and in vitro, suggesting that some portion of the NH2-terminal arm is required for proper folding of the remainder of the molecule.  相似文献   

4.
The LexA repressor from Escherichia coli is a sequence-specific DNA binding protein that shows no pronounced sequence homology with any of the known structural motifs involved in DNA binding. Since little is known about how this protein interacts with DNA, we have selected and characterized a great number of intragenic, second-site mutations which restored at least partially the activity of LexA mutant repressors deficient in DNA binding. In 47 cases, the suppressor effect of these mutations was due to an Ind- phenotype leading presumably to a stabilization of the mutant protein. With one exception, these second-site mutations are all found in a small cluster (amino acid residues 80 to 85) including the LexA cleavage site between amino acid residues 84 and 85 and include both already known Ind- mutations as well as new variants like GN80, GS80, VL82 and AV84. The remaining 26 independently isolated second-site suppressor mutations all mapped within the amino-terminal DNA binding domain of LexA, at positions 22 (situated in the turn between helix 1 and helix 2) and positions 57, 59, 62, 71 and 73. These latter amino acid residues are all found beyond helix 3, in a region where we have previously identified a cluster of LexA (Def) mutant repressors. In several cases the parental LexA (Def) mutation has been removed by subcloning or site-directed mutagenesis. With one exception, these LexA variants show tighter in vivo repression than the LexA wild-type repressor. The most strongly improved variant (LexA EK71, i.e. Glu71----Lys) that shows an about threefold increased repression rate in vivo, was purified and its binding to a short consensus operator DNA fragment studied using a modified nitrocellulose filter binding assay. As expected from the in vivo data, LexA EK71 interacts more tightly with both operator and (more dramatically) with non-operator DNA. A determination of the equilibrium association constants of LexA EK71 and LexA wild-type as a function of monovalent salt concentration suggests that LexA EK71 might form an additional ionic interaction with operator DNA as compared to the LexA wild-type repressor. A comparison of the binding of LexA to a non-operator DNA fragment further shows that LexA interacts with the consensus operator very selectively with a specificity factor of Ks/Kns of 1.4 x 10(6) under near-physiological salt conditions.  相似文献   

5.
6.
Mutations in the tryptophan-binding site of the trp repressor have been generated using site-directed mutagenesis. The selection of sites for alteration was based on the three-dimensional x-ray crystallographic structure (Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L., and Sigler, P. B. (1985) Nature 317, 782-786). The changes generated include Thr-44 to Ala (T44A), Arg-54 to Leu (R54L), Arg-54 to Lys (R54K), Arg-84 to Leu (R84L), and Arg-84 to Lys (R84K). The mutant proteins were purified and characterized in detail for their binding properties. Both tryptophan and operator DNA affinities for all five mutants were decreased. The R84L, R54K, and R54L mutants exhibited increases in Kd for operator DNA relative to wild-type repressor ranging from approximately 10(3) to approximately 10(4), while R84K and T44A exhibited increases of 10- to 100-fold. This diminution in DNA binding activity derives at least in part from diminished affinity for tryptophan, although decreased affinity for nonspecific DNA was also observed for these mutant proteins. Tryptophan binding was not detectable by equilibrium dialysis for most of the mutant proteins, but this activity was measurable for several of the altered proteins by monitoring the fluorescence decrease associated with the displacement of 1-anilino-8-naphthalenesulfonate from the tryptophan-binding site (Chou, W.-Y., and Matthews, K. S. (1989) J. Biol. Chem. 264, 18314-18319). These measurements revealed that tryptophan bound to R84K, T44A, and R84L repressors with Kd values 1.5- to 13-fold higher than that for wild-type repressor. It was not possible to detect tryptophan binding to R54K and R54L even using the fluorescence assay. Circular dichroism spectra demonstrated that the mutants and the wild-type repressor possess similar secondary structural features. The results of this selected substitution in the tryptophan-binding site are readily interpreted based on the x-ray structural analysis.  相似文献   

7.
The NH2-terminal arms of the Escherichia coli trp repressor have been implicated in three functions: formation of repressor–operator complexes via association with non-operator DNA; stabilization of repressor oligomers bound to DNA; and oligomerization of the aporepressor in the absence of DNA. To begin to examine the structural aspects of the arms that are responsible for these varied activities, we generated an extensive set of deletion and substitution mutants and measured the activities of these mutants in vivo using reporter gene fusions. Deletion of any part of the arms resulted in a significant decrease in repressor activity at both the trp and the trpR operons. Positions 4, 5 and 6 were the most sensitive to missense changes. Most substitutions at these positions resulted in repressors with less than 5% of the activity of the wild-type trp repressor. A large percentage of the missense mutants were more active than the wild-type repressor in medium containing tryptophan and less active in medium without tryptophan. This phenotype can be explained in terms of altered oligomerization of both the repressor and the aporepressor. Also, nine super-repressor mutants, resulting from substitutions clustered at both ends of the arms, were found. Our results support the hypothesis that the NH2-terminal arm of the trp repressor is a multifunctional domain and reveal structural components likely to be involved in the various functions.  相似文献   

8.
Second-Site Revertants of Escherichia Coli Trp Repressor Mutants   总被引:5,自引:2,他引:3  
L. S. Klig  D. L. Oxender    C. Yanofsky 《Genetics》1988,120(3):651-655
Second-site reversion studies were performed with five missense mutants with defects in the trp repressor of Escherichia coli. These mutants were altered throughout the gene. The same unidirectional mutagen used in the isolation of these mutants, hydroxylamine, was used in reversion studies, to increase the liklihood that the revertants obtained would have second-site changes. Most of the second-site revertants were found to have the same amino acid substitutions detected previously as superrepressor changes. These second-site revertant repressors were more active in vivo than their parental mutant repressors, in the presence or absence of exogenous tryptophan. Apparently superrepressor changes at many locations in this protein can act globally to increase the activity of mutant repressors.  相似文献   

9.
The DNA-binding properties of two super-repressor mutants of the Escherichia coli trp repressor, EK18 and AV77, have been investigated using steady-state fluorescence anisotropy measurements, in order to further elucidate the basis for their super-repressor phenotypes. Several suggestions have been previously proposed as the basis for the super-repressor phenotype of EK18 and AV77. For the negative to positive charge change EK18 mutant, increased electrostatic interactions between the EK18 mutant and the operator and increased protein-protein interactions between EK18 dimers have been suggested as contributing to the super-repressor phenotype of this mutant. We show that EK18 dimers actually bind to wild-type and variant operator sequences with a decrease in apparent cooperativity and an increase in affinity, compared to WTTR dimers. Thus, the EK18 super-repressor phenotype is not due to increased cooperative binding between EK18 dimers. These results support the hypothesis that the super-repressor phenotype of EK18 arises from increased electrostatic interactions between the mutant and DNA. In the case of the AV77 mutant, weaker binding affinity of apo-AV77 to non-specific DNA, increased selectivity of binding of AV77 for the operator, and a higher population of folded functional AV77 dimers available to bind the operator under limiting L-Trp conditions in vivo, have been proposed for the super-repressor phenotype of this mutant. We show that like the EK18 mutant, apoAV77 binds with higher affinity to non-specific DNA compared to apo-WTTR and that the holo-AV77 mutant does not bind with higher selectivity to the operator, has had been previously proposed. We therefore conclude that the super-repressor phenotype of the AV77 mutant is due to an increase in the population of folded, functional AV77 dimers, under limiting L-Trp conditions in vivo.  相似文献   

10.
Interaction of the Escherichia coli trp repressor with the promoter-operator regions of the trp, aroH and trpR operons was studied in vivo and in vitro. The three operators have similar, but non-identical, sequences; each operator is located in a different segment of its respective promoter. In vivo repression of the three operons was measured using single-copy gene fusions to lacZ. The extent of repression varied from 300-fold for the trp operon, to sixfold for the aroH operon and threefold for the trpR operon. To determine whether differential binding of repressor to the three operators was responsible for the differences in repression observed in vivo, three in vitro binding assays were employed. Restriction-site protection, gel retardation and DNase footprinting analyses revealed that repressor binds to the three operators with almost equal affinity. It was also shown in an in vivo competition assay that repressor binds approximately equally well to each of the three operators. It is proposed that the differential regulation observed in vivo may be due to the different relative locations of the three operators within their respective promoters.  相似文献   

11.
Availability of the three-dimensional structure of the trp repressor of Escherichia coli and a large group of repressor mutants has permitted the identification and analysis of mutants with substitutions of the amino acid residues that form the tryptophan binding pocket. Mutant aporepressors selected for study were overproduced using a multicopy expression plasmid. Equilibrium dialysis with 14C-tryptophan and purified mutant and wild type aporepressors was employed to determine tryptophan binding constants. The results obtained indicate that replacement of threonine 44 by methionine (TM44) or arginine 84 by histidine (RH84) lowers the affinity for tryptophan approximately two- and four-fold, respectively. Replacement of arginine 54 by histidine (RH84) or glycine 85 by arginine (GR85) results in complete loss of tryptophan binding activity. Purified mutant and wild type aporepressors were used in in vitro heterodimer studies. The trp repressor of E. coli functions as a stable dimer. A large number of trp repressor mutants produces defective repressors that are transdominant to the wild type repressor in vivo. The transdominance presumably results from the formation of inactive or slightly active heterodimers between the mutant and wild type polypeptide subunits. An in vitro assay was developed to detect and measure heterodimer formation. Heterodimer formation was thermally induced, and heterodimers were separated on nondenaturing polyacrylamide gels. Aporepressors readily formed heterodimers upon treatment at 65 degrees C for 3 minutes. Heterodimer formation was significantly retarded by the presence of the corepressor, L-tryptophan. Indole-3-propionic acid, 5-methyl tryptophan, and other analogs of tryptophan, as well as indole, also inhibited heterodimer formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have used an alkaline phosphatase protection assay to investigate the interaction of the trp repressor with its operator sequence. The assay is based on the principle that the trp repressor will protect a terminally 5'-32P-labeled operator DNA fragment from attack by alkaline phosphatase. The optimal oligonucleotide for investigating the trp repressor/operator interaction extends two base pairs from each end of the genetically defined target sequence predicted by in vivo studies [Bass et al. (1987) Genes Dev. 1, 565-572]. The assay works well over a 10,000-fold range of protein/DNA affinity and is used to show that the corepressor, L-tryptophan, causes the liganded repressor to bind a 20 base pair trp operator duplex 6400 times more strongly than the unliganded aporepressor. The affinity of the trp repressor for operators containing symmetrical mutations was interpreted in terms of the trp repressor/operator crystal structure as follows: (1) Direct hydrogen bonds with the functional groups of G-9 of the trp operator and the side chain of Arg 69 of the trp repressor contribute to DNA-binding specificity. (2) G-6 of the trp operator is critical for DNA-binding specificity probably because of the two water-mediated hydrogen bonds between its functional groups and the N-terminus of the trp repressor's E-helix. (3) Sequence-dependent aspects of the trp operator's conformation help stabilize the trp repressor/operator complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have employed a filter binding assay to help study the mechanism by which bound L-tryptophan enables the Escherichia coli trp repressor to bind its operators. We have prepared variants of the trp repressor using structural analogues of the natural corepressor, L-tryptophan, and measured the affinity of these variants for a 20-base pair oligonucleotide duplex containing a symmetrical idealization of the trp operator from the E. coli trpEDCBA operon. By normalizing for each analogue's previously determined affinity for the trp aporepressor, we have estimated the extent to which each of the functional groups of bound L-tryptophan contributes to operator affinity. We discuss the likely role of these functional groups in the context of the crystal structures of the inactive, unliganded trp aporepressor, the liganded, active repressor, an inactive pseudorepressor (Pseudorepressors are formed by analogues of L-tryptophan that bind at the tryptophan-binding site but form near isomorphs of the repressor that have poor affinity for operator-DNA.) and the trp repressor/operator complex. We find that the alpha-amino group and an unsubstituted amino (-NH-) nitrogen of L-tryptophan's indole ring are essential for operator affinity. The former properly orients the corepressor and the latter interacts directly with the DNA. The alpha-carboxyl group, on the other hand, greatly enhances but is not essential for operator binding. The alpha-carboxylate's role, which is dependent on the corepressor's orientation in the binding pocket, is apparently to position the guanidinium group of Arg-84 for favorable contacts with the operator's sugar-phosphate backbone.  相似文献   

14.
The fluorescence decay properties of wild-type trp repressor (TR) have been characterized by carrying out a multi-emission wavelength study of the frequency response profiles. The decay is best analyzed in terms of a single exponential decay near 0.5 ns and a distribution of lifetimes centered near 3-4 ns. By comparing the recovered decay associated spectra and lifetime values with the structure of the repressor, tentative assignments of the two decay components recovered from the analysis to the two tryptophan residues, W19 and W99, of the protein have been made. These assignments consist of linking the short, red emitting component to emission from W99 and most of the longer bluer emitting lifetime distribution to emission from W19. Next, single tryptophan mutants of the repressor in which one of each of the tryptophan residues was substituted by phenylalanine were used to confirm the preliminary assignments, inasmuch as the 0.5-ns component is clearly due to emission from tryptophan 99, and much of the decay responsible for the recovered distribution emanates from tryptophan 19. The data demonstrate, however, that the decay of the wild-type protein is not completely resolvable due both to the large number of components in the wild-type emission (at least five) as well as to the fact that three of the five lifetime components are very close in value. The fluorescence decay of the wild-type decay is well described as a combination of the components found in each of the mutants. However, whereas the linear combination analysis of the 15 data sets (5 from the wild-type and each mutant) yields a good fit for the components recovered previously for the two mutants, the amplitudes of these components in the wild-type are not recovered in the expected ratios. Because of the dominance of the blue shifted emission in the wild-type protein, it is most likely that subtle structural differences in the wild-type as compared with the mutants, rather than energy transfer from tryptophan 19 to 99, are responsible for this failure of the linear combination hypothesis.  相似文献   

15.
T Fernando  C Royer 《Biochemistry》1992,31(13):3429-3441
In the present work, we have characterized the protein--protein interactions in the trp repressor (TR) from Escherichia coli using fluorescence spectroscopy. The steady-state and time-resolved fluorescence anisotropy of repressor labeled with 5-(dimethylamino)naphthalene-1-sulfonamide (DNS) was used to monitor subunit equilibria in the absence and presence of corepressor. In the absence of tryptophan, the repressor is in equilibrium between tetramers and dimers in the concentration range studied (approximately 0.04-40 microM in dimer). Binding of corepressor resulted in a marked destabilization of the tetramer. The beginning of a dimer-monomer dissociation transition was observed by monitoring the decrease in the intrinsic tryptophan emission energy upon dilution below 0.1 microM in dimer, indicating an upper limit for the dimer-dissociation constant near 1 nM. DNA titrations with a 26 base pair sequence containing the trp EDCBA operator performed in the absence and presence of the corepressor are consistent with a 1:1 dimer/operator stoichiometry in the presence of tryptophan, while the aporepressor binds with TR dimer/DNA stoichiometries greater than one and which depend upon both the concentration of protein and that of the operator. Using the multiple observable parameters available in fluorescence, we have thus carried out a thorough investigation of the coupled equilibria in this bacterial repressor. Our results are consistent with a physiologically relevant thermodynamic role for tetramerization in the regulatory function of the trp repressor. The present results which have brought to light novel protein--protein interactions in the trp repressor system indicate that fluorescence spectroscopic methods could prove quite useful in the study of the role of protein--protein interactions in eukaryotic systems as well.  相似文献   

16.
The regulation of the trp repressor system of Escherichia coli is frequently modeled by a single equilibrium, that between the aporepressor (TR) and the corepressor, l-tryptophan (Trp), at their intracellular concentrations. The actual mechanism, which is much more complex and more finely tuned, involves multiple equilibria: TR and Trp association, TR oligomerization, specific and nonspecific binding of various states of TR to DNA, and interactions between these various species and ions. TR in isolation exists primarily as a homodimer, but the state of oligomerization increases as the TR concentration goes up and/or the salt concentration goes down, leading to species with lower affinity for DNA. We have used multinuclear, multidimensional NMR spectroscopy to investigate structural changes that accompany the oligomerization of TR. For these investigations, the superrepressor mutant EK18 (TR with Glu 18 replaced by Lys) was chosen because it exhibits less severe oligomerization at higher protein concentration than other known variants; this made it possible to study the dimer to tetramer oligomerization step by NMR. The NMR results suggest that the interaction between TR dimers is structurally linked to folding of the DNA binding domain and that it likely involves direct contacts between the C-terminal residues of the C-helix of one dimer with the next dimer. This implies that oligomerization can compete with DNA binding and thus serves as a factor in the fine-tuning of gene expression.  相似文献   

17.
An active gene has been constructed which produces a chimera consisting of the N-terminal domain of the gal repressor and all but the first five residues of beta-galactosidase. Seventy two residues of gal repressor fused to beta-galactosidase as tetrameric core are sufficient to repress the gal operon in vivo and to bind to the gal operator in vitro.  相似文献   

18.
The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile "arms". Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well.  相似文献   

19.
The interaction of Trp repressor protein with partial trp operators was studied in vitro and in vivo. At high ratios of protein to DNA, Trp holorepressor formed stable complexes with DNA molecules containing half operators. When plasmids conferring the capacity to hyperproduce Trp repressor were present in trpOc strains of Escherichia coli, repression of downstream tryptophan synthase occurred. Palindromicity of the trp operator may facilitate stable interaction with Trp repressor, but this attribute need not be regarded as a critically essential structural feature. Sufficient information for the recognition by Trp repressor protein of an appropriate target resides within a DNA sequence of approximately ten base-pairs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号