首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Genetic experiments have indicated that asparagine auxotrophs of Escherichias coli K-12 can be made asparagine prototrophs at either of two sites on the chromosome and that wild-type strains require both sites to be mutated to produce asparagine auxotrophy. The former asn locus is now called asnA, and the new gene is designated asnB. The asnB gene is located near gal.AsnA+ asnB and asnA asnB+ strains were constructed, and the asparagine synthetic reaction was characterized in extracts. These studies revealed that the asnA gene codes for the enzyme previously described (H. Cedar and J.H. Schwartz, J. Biol. Chem. 244: 4112-4121, 1969), whereas the asnB gene is involved in the production of an enzyme which differs from the one previously described in its specific activity in extracts, its stability at low and high temperatures, and its apparent ability to use either glutamine or ammonia as amide nitrogen donor. Physiological studies showed that either enzyme alone is sufficient to allow a maximal growth rate under conditions of asparagine limitation.  相似文献   

2.
3.
4.
We have subcloned the asnA gene of E. coli K-12, a gene coding for asparagine synthetase, from a previously cloned 6 mega-dalton segment of E. coli chromosome containing the DNA replication origin, ori, and asnA. The complete nucleotide sequence of the asnA gene was determined: the region of the structural gene extends 990 base-pairs at nucleotide positions 1434-2423 (see Fig. 3), which codes for a polypeptide of 330 amino-acid residues with a molecular weight of 36,688 daltons. The nucleotide sequences of the promoter and the ribosome-binding site of the gene are also assigned. We discuss the properties of its polypeptide.  相似文献   

5.
6.
Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUC18, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15% of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.  相似文献   

7.
By inserting a lambda placMu bacteriophage into gene glmS encoding glucosamine 6-phosphate synthetase (GlmS), the key enzyme of amino sugar biosynthesis, a nonreverting mutant of Escherichia coli K-12 that was strictly dependent on exogenous N-acetyl-D-glucosamine or D-glucosamine was generated. Analysis of suppressor mutations rendering the mutant independent of amino sugar supply revealed that the catabolic enzyme D-glucosamine-6-phosphate isomerase (deaminase), encoded by gene nagB of the nag operon, was able to fulfill anabolic functions in amino sugar biosynthesis. The suppressor mutants invariably expressed the isomerase constitutively as a result of mutations in nagR, the locus for the repressor of the nag regulon. Suppression was also possible by transformation of glmS mutants with high-copy-number plasmids expressing the gene nagB. Efficient suppression of the glmS lesion, however, required mutations in a second locus, termed glmX, which has been localized to 26.8 min on the standard E. coli K-12 map. Its possible function in nitrogen or cell wall metabolism is discussed.  相似文献   

8.
We developed a new method for the specific mutagenization of the E. coli chromosome. This method takes advantage of the fact that a pBR322 plasmid containing chromosomal sequences is mobilizable during an Hfr-mediated conjugational transfer, due to an homologous recombination between the E. coli Hfr chromosome and the pBR322 derivative. Transconjugants are screened with a simple selection procedure for integration of mutant sequences in the chromosome and loss of pBR322 sequences. Using this method we specifically inactivated several genes near the E. coli replication origin oriC. We found that a gene coding for asparagine synthetase A. This regulatory mechanism was investigated in detail by determining in vivo regulation of asnA promoter activity by the 17kD protein under different growth conditions. Results obtained also suggest a general regulatory role of the 17kD protein in E. coli asparagine metabolism. Therefore the 17kD gene is proposed to be renamed asnC.  相似文献   

9.
10.
To establish the molecular basis of the chromosomal virulence genes of Shigella flexneri 2a (YSH6000), a Notl restriction map of the chromosome was constructed by exploiting Notl-linking clones, partial Notl digestion and DNA probes from various genes of Escherichia coli K-12. The map revealed at least three local differences in the placements of genes between YSH6000 and E. coli K-12. Using the additional Notl sites introduced by Tn5 insertion, nine virulence loci identified previously by random Tn5 insertions were physically mapped on the chromosome. To demonstrate the versatility of the Notl map in direct assignment of the virulence loci tagged by Tn5 to a known genetic region in E. coli K-12, the major class of avirulent mutants defective in the core structure of lipopolysaccharide (LPS) was examined for the sites of Tn5 insertions. The two Notl segments created by the Tn5 insertion in the Notl fragment were analysed by Southern blotting with two DNA probes for the 5' and 3' flanking regions of the rfa region, and shown to hybridize separately with each of them, confirming the sites of Tn5 in the rfa locus. This approach will facilitate direct comparison genetically mapped Tn5 insertion mutations of S. flexneri with genes physically determined in E. coli K-12.  相似文献   

11.
The Corynebacterium glutamicum mutant KY9714, originally isolated as a lysozyme-sensitive mutant, does not grow at 37 degrees C. Complementation tests and DNA sequencing analysis revealed that a mutation in a single gene of 1,920 bp, ltsA (lysozyme and temperature sensitive), was responsible for its lysozyme sensitivity and temperature sensitivity. The ltsA gene encodes a protein homologous to the glutamine-dependent asparagine synthetases of various organisms, but it could not rescue the asparagine auxotrophy of an Escherichia coli asnA asnB double mutant. Replacement of the N-terminal Cys residue (which is conserved in glutamine-dependent amidotransferases and is essential for enzyme activity) by an Ala residue resulted in the loss of complementation in C. glutamicum. The mutant ltsA gene has an amber mutation, and the disruption of the ltsA gene caused lysozyme and temperature sensitivity similar to that in the KY9714 mutant. L-Glutamate production was induced by elevating growth temperature in the disruptant. These results indicate that the ltsA gene encodes a novel glutamine-dependent amidotransferase that is involved in the mechanisms of formation of rigid cell wall structure and in the L-glutamate production of C. glutamicum.  相似文献   

12.
13.
The cpxA gene of E. coli K-12 lies between genes glpK and tpi, closely linked to the latter at 87.8 min on the linkage map. Since no other gene has been mapped in this interval, cpxA is a new addition to the linkage map.  相似文献   

14.
The paper deals with a mutant of Escherichia coli K-12 obtained by transposon Tn5 mutagenesis. Insertion of this transposon inactivated the gene for L-threonine dehydrogenase catalysing the first step of L-threonine degradation. The insertion of Tn5 was mapped by using conjugation as well as transduction by T4GT7 and P1. It is located at 81 min of the E. coli genetic map between mtl and pyrE genes.  相似文献   

15.
Escherichia coli C strains can grow at the expense of the two natural pentitols ribitol and D-arabitol, sugar alcohols previously thought not to be utilized by E. coli. E. coli strains K-12 and B cannot utilize either compound. The genetic loci responsible for pentitol catabolism in E. coli C, designated rtl and atl, are separate and closely linked. Each lies between metG and his and is highly co-transducible with metG and with a P2 prophage attachment site. rtl and atl readily can be transduced into E. coli K-12 or B strains, in which they integrate at, or very near, their E. coli C location. Transduction also can be used to insert rtl and atl into certain E. coli K-12 F' plasmids. No recombination between E. coli C strains and either K-12 or B strains occurs within the rtl-atl genetic region after interstrain conjugations or transductions. No cryptic rtl or atl genes in K-12 or B strains can be detected by complementation, recombination, or mutagenesis. These results are consistent with the view that the rtl-atl portion of the E. coli C chromosome has no counterpart in E. coli K-12 or B and may have been obtained from an extrageneric source. Detailed biochemical and genetic comparisons of penitol utilization in E. coli and Klebsiella aerogenes are in progress. The ability to catabolize xylitol is conferred upon E. coli C strains by a mutation at or adjacent to the rtl locus, whereas in E. coli K-12 or B strains harboring rtl an additional mutation at a separate locus is required for xylitol utilization.  相似文献   

16.
17.
The control mutation that results in a concomitant severalfold increase in the activities of gamma-aminobutyrate-alpha-ketoglutarate transaminase (GSST, EC 2.6.1.19) and succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16), leading to the acquisition of the ability to utilize gamma-aminobutyrate (GABA) as the sole source of nitrogen by Escherichia coli K-12 mutants, was mapped by mating and transduction with P1kc. The locus affected, gabC, is approximately 48% co-transduced with the thyA gene, located at min 55 of the E. coli K-12 chromosome. The structural gene of the first enzyme in the GABA pathway, GSST, was mapped by interrupted mating, using one of the GSST-less mutants, DB742, isolated in this work. The mutated locus, gabT, is situated at about min 73 of the E. coli chromosome, close to the gltC gene. Genetic evidence concerning the sensitivity of the enzymes of the GABA pathway to catabolite repression under different physiological conditions suggests that the two structural genes of the GABA regulon do not constitute one operon.  相似文献   

18.
19.
Y Kano  M Wada  T Nagase  F Imamoto 《Gene》1986,45(1):37-44
The gene hupB encoding the HU-1(HU beta) protein of Escherichia coli was mapped between proC at min 9 and minA at min 10 on the K-12 genome by plasmid integration and chromosome transfer studies. Genetic studies using plasmid rescue techniques demonstrated that the lon gene is located very close to the 5' end of hupB and that the two genes are both transcribed clockwise on the E. coli map [Bachmann, Microbiol. Rev. 47 (1983) 180-230].  相似文献   

20.
The structural gene encoding cytidine deaminase (cdd) has been mapped in Escherichia coli K-12. It is located counterclockwise to ptsF between 46 and 47 min. The gene order in this region of the E. coli chromosome was found to be his-udk-gat-dld-cdd-ptsF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号