首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PDZ (acronym of the synapse-associated protein PSD-95/SAP90, the septate junction protein Discs-large, and the tight junction protein ZO-1) domains are abundant small globular protein interaction domains that mainly recognize the carboxyl termini of their target proteins. Detailed knowledge on PDZ domain binding specificity is a prerequisite for understanding the interaction networks they establish. We determined the binding preference of the five PDZ domains in the protein tyrosine phosphatase PTP-BL by screening a random C-terminal peptide lambda phage display library. Interestingly, the potential of PDZ2 to interact with class III-type ligands was found to be modulated by the presence of PDZ1. Structural studies revealed a direct and specific interaction of PDZ1 with a surface on PDZ2 that is opposite the peptide binding groove. Long-range allosteric effects that cause structural changes in the PDZ2 peptide binding groove thus explain the altered PDZ2 binding preference. Our results experimentally corroborate that the molecular embedding of PDZ domains is an important determinant of their ligand binding specificity.  相似文献   

2.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signalling complexes. They specifically bind to short C-terminal peptides and occasionally to internal sequences that structurally resemble such peptide termini. The binding of PDZ domains is dominated by the residues at the P(0) and P(-2) position within these C-terminal targets, but other residues are also important in determining specificity. In this study, we analysed the binding specificity of the third PDZ domain of protein tyrosine phosphatase BAS-like (PTP-BL) using a C-terminal combinatorial peptide phage library. Binding of PDZ3 to C-termini is preferentially governed by two cysteine residues at the P(-1) and P(-4) position and a valine residue at the P(0) position. Interestingly, we found that this binding is lost upon addition of the reducing agent dithiothrietol, indicating that the interaction is disulfide-bridge-dependent. Site-directed mutagenesis of the single cysteine residue in PDZ3 revealed that this bridge formation does not occur intermolecularly, between peptide and PDZ3 domain, but rather is intramolecular. These data point to a preference of PTP-BL PDZ3 for cyclic C-terminal targets, which may suggest a redox state-sensing role at the cell cortex.  相似文献   

3.
Gee SH  Quenneville S  Lombardo CR  Chabot J 《Biochemistry》2000,39(47):14638-14646
PDZ domains are modular protein-protein interaction domains that bind to specific C-terminal sequences of membrane proteins and/or to other PDZ domains. Certain PDZ domains in PSD-95 and syntrophins interact with C-terminal peptide ligands and heterodimerize with the extended nNOS PDZ domain. The capacity to interact with nNOS correlates with the presence of a Lys residue in the carboxylate- binding loop of these PDZ domains. Here, we report that substitution of an Arg for Lys-165 in PSD-95 PDZ2 disrupted its interaction with nNOS, but not with the C terminus of the Shaker-type K(+) channel Kv1.4. The same mutation affected nNOS binding to alpha1- and beta1-syntrophin PDZ domains to a lesser extent, due in part to the stabilizing effect of tertiary interactions with the canonical nNOS PDZ domain. PDZ domains with an Arg in the carboxylate-binding loop do not bind nNOS; however, substitution with Lys or Ala was able to confer nNOS binding. Our results indicate that the carboxylate-binding loop Lys or Arg is a critical determinant of nNOS binding and that the identity of this residue can profoundly alter one mode of PDZ recognition without affecting another. We also analyzed the effects of mutating Asp-143, a residue in the alphaB helix of alpha1-syntrophin that forms a tertiary contact with the nNOS PDZ domain. This residue is important for both nNOS and C-terminal peptide binding and confers a preference for peptides with a positively charged residue at position -4. On this basis, we have identified the C terminus of the Kir2.1 channel as a possible binding partner for syntrophin PDZ domains. Together, our results demonstrate that single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.  相似文献   

4.
PDZ domains mediate protein-protein interactions at specialized subcellular sites, such as epithelial cell tight junctions and neuronal post-synaptic densities. Because most PDZ domains bind extreme carboxyl-terminal sequences, the phage display method has not been amenable to the study of PDZ domain binding specificities. For the first time, we demonstrate the functional display of a peptide library fused to the carboxyl terminus of the M13 major coat protein. We used this library to analyze carboxyl-terminal peptide recognition by two PDZ domains. For each PDZ domain, the library provided specific ligands with sub-micromolar binding affinities. Synthetic peptides and homology modeling were used to dissect and rationalize the binding interactions. Our results establish carboxyl-terminal phage display as a powerful new method for mapping PDZ domain binding specificity.  相似文献   

5.
Nan Li  Tingjun Hou  Bo Ding  Wei Wang 《Proteins》2013,81(9):1676-1676
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein–protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 217 peptides using a method called MIECSVM, which energetically characterizes the domain‐peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross‐validation and leave‐one‐domain‐out test showed that the MIEC‐SVM using all 44 PDZ‐peptide residue pairs at the interaction interface outperformed the sequence‐based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC‐SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ‐peptide recognition is established. The success of the MIEC‐SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein‐ peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

6.
Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity.  相似文献   

7.
PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.  相似文献   

8.
Chen J  Pan L  Wei Z  Zhao Y  Zhang M 《The EMBO journal》2008,27(15):2113-2123
PDZ domain scaffold proteins are capable of assembling macromolecular protein complexes in diverse cellular processes through PDZ-mediated binding to a short peptide fragment at the carboxyl tail of target proteins. How each PDZ domain specifically recognizes its target protein(s) remains a major conceptual question, as at least a few out of the several hundred PDZ domains in each eukaryotic genome share overlapping binding properties with any given target protein. Here, we show that the domain-swapped dimerization of zonula occludens-1 PDZ2 generates a distinct interface that functions together with the well-separated canonical carboxyl tail-binding pocket in each PDZ unit in binding to connexin43 (Cx43). We further demonstrate that the charge-charge interaction network formed by residues in the PDZ dimer interface and upstream residues of the Cx43 peptide not only provides the unprecedented interaction specificity for the complex but may also function as a phosphorylation-mediated regulatory switch for the dynamics of the Cx43 gap junctions. Finally, we provide evidence that such domain-swapped dimer assembly also occurs in other PDZ domain scaffold proteins. Therefore, our findings present a new paradigm for understanding how some PDZ domain proteins specifically bind to and regulate the functions of their target proteins.  相似文献   

9.
Li N  Hou T  Ding B  Wang W 《Proteins》2011,79(11):3208-3220
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 2387 peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross-validation and leave-one-domain-out test showed that the MIEC-SVM using all 44 PDZ-peptide residue pairs at the interaction interface outperformed the sequence-based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC-SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ-peptide recognition is established. The success of the MIEC-SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein-peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

10.
PDZ domains are among the most abundant protein modules in the known genomes. Their main function is to provide scaffolds for membrane-associated protein complexes by binding to the cytosolic, C-terminal fragments of receptors, channels, and other integral membrane proteins. Here, using both heteronuclear NMR and single crystal X-ray diffraction, we show how peptides with different sequences, including those corresponding to the C-termini of syndecan, neurexin, and ephrin B, can simultaneously bind to both PDZ domains of the scaffolding protein syntenin. The PDZ2 domain binds these peptides in the canonical fashion, and an induced fit mechanism allows for the accommodation of a range of side chains in the P(0) and P(-)(2) positions. However, binding to the PDZ1 domain requires that the target peptide assume a noncanonical conformation. These data help explain how syntenin, and perhaps other PDZ-containing proteins, may preferentially bind to dimeric and clustered targets, and provide a mechanistic explanation for the previously reported cooperative ligand binding by syntenin's two PDZ domains.  相似文献   

11.
PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family.  相似文献   

12.
PDZ domains are protein-protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position -2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.  相似文献   

13.
Peptide recognition domains (PRDs) are ubiquitous protein domains which mediate large numbers of protein interactions in the cell. How these PRDs are able to recognize peptide sequences in a rapid and specific manner is incompletely understood. We explore the peptide binding process of PDZ domains, a large PRD family, from an equilibrium perspective using an all-atom Monte Carlo (MC) approach. Our focus is two different PDZ domains representing two major PDZ classes, I and II. For both domains, a binding free energy surface with a strong bias toward the native bound state is found. Moreover, both domains exhibit a binding process in which the peptides are mostly either bound at the PDZ binding pocket or else interact little with the domain surface. Consistent with this, various binding observables show a temperature dependence well described by a simple two-state model. We also find important differences in the details between the two domains. While both domains exhibit well-defined binding free energy barriers, the class I barrier is significantly weaker than the one for class II. To probe this issue further, we apply our method to a PDZ domain with dual specificity for class I and II peptides, and find an analogous difference in their binding free energy barriers. Lastly, we perform a large number of fixed-temperature MC kinetics trajectories under binding conditions. These trajectories reveal significantly slower binding dynamics for the class II domain relative to class I. Our combined results are consistent with a binding mechanism in which the peptide C terminal residue binds in an initial, rate-limiting step.  相似文献   

14.
High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.  相似文献   

15.
AF-6 is a key molecule essential for structure organization of cell-cell junction of polarized epithelia. It belongs to a novel cell-cell adhesion system. The AF-6 PDZ domain mediates interactions by binding to a specific amino acid sequence in target proteins. Here we report the solution structure of the AF-6 PDZ domain determined by NMR. Previously, the AF-6 PDZ domain was considered to be a class II PDZ domain. However we found that a unique hydrophilic amino acid, Gln70, at position alphaB1 makes the alphaB/betaB groove of the AF-6 PDZ domain significantly different from that of the canonical class II PDZ domain. The AF-6 PDZ domain does not have the second hydrophobic binding pocket, and the N-terminal end of alphaB is closer to betaB. Using BIACORE and NMR chemical shift perturbation experiments, we have studied the binding characteristics of the PDZ domain to the C-terminal peptide of Neurexin, KKNKDKEYYV, and that of Bcr, KRQSILFSTEV. The C-terminal peptide of Neurexin is a class II ligand, whereas that of Bcr is a class I ligand. The dissociation constants of these ligands were 4.08 x 10(-7) and 2.23 x 10(-6) m, respectively. Each of the four C-terminal positions in Neurexin and Bcr may contribute to the interaction. The three-dimensional models of the AF-6 PDZ-Neurexin C-terminal peptide complex and the AF-6 PDZ-Bcr C-terminal peptide complex were built up by molecular dynamics simulations. Unlike the canonical class II PDZ domain, Ala74 at alphaB5 rather than the residue at alphaB1 makes direct hydrophobic contact with the side chain of Tyr at the -2 position of the ligand.  相似文献   

16.
To understand the molecular evolution of functional diversity in protein families, we comprehensively investigated the consequences of all possible mutation combinations separating two peptide‐binding domains with highly divergent specificities. We analyzed the Erbin PDZ domain (Erbin‐PDZ), which exhibits canonical type I specificity, and a synthetic Erbin‐PDZ variant (E‐14) that differs at six positions and exhibits an atypical specificity that closely resembles that of the natural Pdlim4 PDZ domain (Pdlim4‐PDZ). We constructed a panel of 64 PDZ domains covering all possible transitions between Erbin‐PDZ and E‐14 (i.e., the panel contained variants with all possible combinations of either the Erbin‐PDZ or E‐14 sequence at the six differing positions). We assessed the specificity profiles of the 64 PDZ domains using a C‐terminal phage‐displayed peptide library containing all possible genetically encoded heptapeptides. The specificity profiles clustered into six distinct groups, showing that intermediate domains can be nodes for the evolution of divergent functions. Remarkably, three substitutions were sufficient to convert the specificity of Erbin‐PDZ to that of Pdlim4‐PDZ, whereas Pdlim4‐PDZ contains 71 differences relative to Erbin‐PDZ. X‐ray crystallography revealed the structural basis for specificity transition: a single substitution in the center of the binding site, supported by contributions from auxiliary substitutions, altered the main chain conformation of the peptide ligand to resemble that of ligands bound to Pdlim4‐PDZ. Our results show that a very small set of mutations can dramatically alter protein specificity, and these findings support the hypothesis whereby complex protein functions evolve by gene duplication followed by cumulative mutations.  相似文献   

17.
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position ?3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Guanine nucleotide exchange factor proteins of the Tiam family are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These proteins are modular and contain a variety of interaction domains, including a single post-synaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Previous studies suggest that the specificities of the Tiam1 and Tiam2 PDZ domains are distinct. Here, we sought to conclusively define these specificities and determine their molecular origin. Using a combinatorial peptide library, we identified a consensus binding sequence for each PDZ domain. Analysis of these consensus sequences and binding assays with peptides derived from native proteins indicated that these two PDZ domains have overlapping but distinct specificities. We also identified residues in two regions (S(0) and S(-2) pockets) of the Tiam1 PDZ domain that are important determinants of ligand specificity. Site-directed mutagenesis of four nonconserved residues in these two regions along with peptide binding analyses confirmed that these residues are crucial for ligand affinity and specificity. Furthermore, double mutant cycle analysis of each region revealed energetic couplings that were dependent on the ligand being investigated. Remarkably, a Tiam1 PDZ domain quadruple mutant had the same specificity as the Tiam2 PDZ domain. Finally, analysis of Tiam family PDZ domain sequences indicated that the PDZ domains segregate into four distinct families based on the residues studied here. Collectively, our data suggest that Tiam family proteins have highly evolved PDZ domain-ligand interfaces with distinct specificities and that they have disparate PDZ domain-dependent biological functions.  相似文献   

19.
PDZ domains are widespread protein modules that commonly recognize C-terminal sequences of target proteins and help to organize macromolecular signaling complexes. These sequences usually bind in an extended conformation to relatively shallow grooves formed between a beta-strand and an alpha-helix in the corresponding PDZ domains. Because of this binding mode, many PDZ domains recognize primarily the C-terminal and the antepenultimate side-chains of the target protein, which commonly conform to motifs that have been categorized into different classes. However, an increasing number of PDZ domains have been found to exhibit unusual specificities. These include the PDZ domain of RIMs, which are large multidomain proteins that regulate neurotransmitter release and help to organize presynaptic active zones. The RIM PDZ domain binds to the C-terminal sequence of ELKS with a unique specificity that involves each of the four ELKS C-terminal residues. To elucidate the structural basis for this specificity, we have determined the 3D structure in solution of an RIM/ELKS C-terminal peptide complex using NMR spectroscopy. The structure shows that the RIM PDZ domain contains an unusually deep and narrow peptide-binding groove with an exquisite shape complementarity to the four ELKS C-terminal residues in their bound conformation. This groove is formed, in part, by a set of side-chains that is conserved selectively in RIM PDZ domains and that hence determines, at least in part, their unique specificity.  相似文献   

20.
PDZ domains most commonly bind the C‐terminus of their protein targets. Typically the C‐terminal four residues of the protein target are considered as the binding motif, particularly the C‐terminal residue (P0) and third‐last residue (P‐2) that form the major contacts with the PDZ domain's “binding groove”. We solved crystal structures of seven human PDZ domains, including five of the seven PDLIM family members. The structures of GRASP, PDLIM2, PDLIM5, and PDLIM7 show a binding mode with only the C‐terminal P0 residue bound in the binding groove. Importantly, in some cases, the P‐2 residue formed interactions outside of the binding groove, providing insight into the influence of residues remote from the binding groove on selectivity. In the GRASP structure, we observed both canonical and noncanonical binding in the two molecules present in the asymmetric unit making a direct comparison of these binding modes possible. In addition, structures of the PDZ domains from PDLIM1 and PDLIM4 also presented here allow comparison with canonical binding for the PDLIM PDZ domain family. Although influenced by crystal packing arrangements, the structures nevertheless show that changes in the positions of PDZ domain side‐chains and the αB helix allow noncanonical binding interactions. These interactions may be indicative of intermediate states between unbound and fully bound PDZ domain and target protein. The noncanonical “perpendicular” binding observed potentially represents the general form of a kinetic intermediate. Comparison with canonical binding suggests that the rearrangement during binding involves both the PDZ domain and its ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号