首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.  相似文献   

2.
He P  Shan L  Sheen J 《Cellular microbiology》2007,9(6):1385-1396
Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.  相似文献   

3.
Global spread of clinically significant strains resistant to antibiotics necessitated the development of new approaches to generation of antibacterial preparations. Selection of virulence factors as targets for new preparations is an alternative approach to therapy of infections caused by resistant strains and chronic infectious diseases. Contemporary state of research aimed at target selection among virulence factors of pathogenic for humans bacteria that cause chronic infections, and screening of specific inhibitors of these targets are examined. Analysis of limited data of therapeutic activity of selected preparations, i.e. experimental confirmation of the proposed concept, is provided.  相似文献   

4.
Antivirulence as a new antibacterial approach for chemotherapy   总被引:1,自引:0,他引:1  
Bacterial resistance to antibiotics is an issue that has led to the search for new antibacterial approaches. Drugs targeting virulence is an alternative approach to treat infections due to resistant bacteria. There is extensive literature and knowledge in the field of bacterial pathogenesis and genomic determinant of virulence. As therapeutic targets, virulence factors have been primarily addressed in the vaccine field to prevent infection by specific pathogens. Recently novel strategies to identify virulence inhibitors have been numerous and several new compounds were recently reported. This review emphasizes the new virulence inhibitors that have shown a biological activity and have made a proof of concept that disarming bacteria lead to the inhibition of bacterial infection in experimental models in vivo. Moreover, some of these new antivirulence compounds are able to inhibit the virulence of different related pathogenic species, indicating that it is possible to target common virulence mechanisms. The progress reported recently with proof of concept for antivirulence molecules at the preclinical stages should allow the antivirulence concept to become a reality as a new antibacterial approach.  相似文献   

5.
N-chlorotaurine (NCT), the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2), used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC). Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.  相似文献   

6.
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.  相似文献   

7.
Although sporadic human infection due to Burkholderia cepacia has been reported for many years, it has been only during the past few decades that species within the B. cepacia complex have emerged as significant opportunistic human pathogens. Individuals with cystic fibrosis, the most common inherited genetic disease in Caucasian populations, or chronic granulomatous disease, a primary immunodeficiency, are particularly at risk of life-threatening infection. Despite advances in our understanding of the taxonomy, microbiology, and epidemiology of B. cepacia complex, much remains unknown regarding specific human virulence factors. The broad-spectrum antimicrobial resistance demonstrated by most strains limits current therapy of infection. Recent research efforts are aimed at a better appreciation of the pathogenesis of human infection and the development of novel therapeutic and prophylactic strategies.  相似文献   

8.
The ability to manipulate animal hosts as well as bacterial pathogens greatly expands the utility of in vivo models of infection. For example, the construction of mice that harbor human tissues or express specific transgenes can provide ligand-receptor interactions that are essential for pathogenesis. Interactions between virulence factors and specific host defenses can sometimes be resolved by challenging selectively immuno deficient mice with bacteria containing virulence gene mutations. Transgenic animals expressing inducible reporters can be used to conveniently identify cells in which specific response pathways have been activated during infection. These and other approaches promise to improve the quality of information obtainable from in vivo assessments of pathogenesis.  相似文献   

9.
Virulence of the protozoan parasite Toxoplasma gondii is highly variable and dependent upon the genotype of the parasite. The application of forward and reverse genetic approaches for understanding the genetic basis of virulence has resulted in the identification of several members of the ROP family as key mediators of virulence. More recently, modern genomic techniques have been used to address strain differences in virulence and have also identified additional members of the ROP family as likely mediators. The development of forward and reverse genetic, as well as modern genomic techniques, and the path to the discovery of the ROP genes as virulence factors is reviewed here.  相似文献   

10.
The genus Campylobacter contains pathogens causing a wide range of diseases, targeting both humans and animals. Among them, the Campylobacter fetus subspecies fetus and venerealis deserve special attention, as they are the etiological agents of human bacterial gastroenteritis and bovine genital campylobacteriosis, respectively. We compare the whole genomes of both subspecies to get insights into genomic architecture, phylogenetic relationships, genome conservation and core virulence factors. Pan-genomic approach was applied to identify the core- and pan-genome for both C. fetus subspecies and members of the genus. The C. fetus subspecies conserved (76%) proteome were then analyzed for their subcellular localization and protein functions in biological processes. Furthermore, with pathogenomic strategies, unique candidate regions in the genomes and several potential core-virulence factors were identified. The potential candidate factors identified for attenuation and/or subunit vaccine development against C. fetus subspecies contain: nucleoside diphosphate kinase (Ndk), type IV secretion systems (T4SS), outer membrane proteins (OMP), substrate binding proteins CjaA and CjaC, surface array proteins, sap gene, and cytolethal distending toxin (CDT). Significantly, many of those genes were found in genomic regions with signals of horizontal gene transfer and, therefore, predicted as putative pathogenicity islands. We found CRISPR loci and dam genes in an island specific for C. fetus subsp. fetus, and T4SS and sap genes in an island specific for C. fetus subsp. venerealis. The genomic variations and potential core and unique virulence factors characterized in this study would lead to better insight into the species virulence and to more efficient use of the candidates for antibiotic, drug and vaccine development.  相似文献   

11.
Salmonella are well-known pathogens. Virulence determinants can be present on the chromosome, usually encoded on pathogenicity islands, or on plasmids and bacteriophages. Antibiotic resistance determinants usually are encoded on plasmids, but can also be present on the multidrug resistance region of Salmonella Genomic Island 1 (SGI1). Virulence plasmids show a remarkable diversity in the combination of virulence factors they encode, which appears to adapt them to specific hosts and the ability to cause gastroenteritidis or systemic disease. The appearance of plasmids with two replicons may help to extend the host range of these plasmids and thereby increase the virulence of previously non- or low pathogenic serovars. Antibiotic resistance among Salmonella is also increasing. This increase is not only in the percentage isolates resistant to a particular antibiotic, but also the development of resistance against newer antibiotics. The increased occurrence of integrons is particularly worrying. Integrons can harbour a varying set of antibiotic resistance encoding gene cassettes. Gene cassettes can be exchanged between integrons. Although the gene cassettes currently present in Salmonella integrons encode for older antibiotics (however, some still frequently used) gene cassettes encoding resistance against the newest antibiotics has been documented in Enterobacteriaceae. Furthermore, beta-lactamases with activity against broad-spectrum cephalosporins, which are often used in empiric therapy, have been found associated with integrons. So, empiric treatment of Salmonella infections becomes increasingly more difficult. The most worrisome finding is that virulence and resistance plasmids form cointegrates. These newly formed plasmids can be selected by antibiotic pressure and thereby for virulence factors. Taken together these trends may lead to more virulent and antibiotic-resistant Salmonella.  相似文献   

12.
Clinically significant antibiotic resistance has evolved against virtually every antibiotic deployed. Yet the development of new classes of antibiotics has lagged far behind our growing need for such drugs. Rather than focusing on therapeutics that target in vitro viability, much like conventional antibiotics, an alternative approach is to target functions essential for infection, such as virulence factors required to cause host damage and disease. This approach has several potential advantages including expanding the repertoire of bacterial targets, preserving the host endogenous microbiome, and exerting less selective pressure, which may result in decreased resistance. We review new approaches to targeting virulence, discuss their advantages and disadvantages, and propose that in addition to targeting virulence, new antimicrobial development strategies should be expanded to include targeting bacterial gene functions that are essential for in vivo viability. We highlight both new advances in identifying these functions and prospects for antimicrobial discovery targeting this unexploited area.  相似文献   

13.
14.
Intracellular bacteria constitute a major class of pathogens for humans and animals. Their pathogenicity is linked to their ability to multiply inside a host cell. A set of virulence genes (virulome) is required for this intracellular lifestyle. Recent studies have shown that blocking the enzymes encoded by these virulence genes impairs intracellular multiplication of the pathogen. These specific factors could constitute a new set of possible targets for antimicrobial drugs. The potential advantages, pitfalls and challenges of a strategy that targets these virulence factors are discussed.  相似文献   

15.
With expansion of our understanding of pathogen effector strategies and the multiplicity of their host targets, it is becoming evident that novel approaches to engineering broad-spectrum resistance need to be deployed. The increasing availability of high temporal gene expression data of a range of plant–microbe interactions enables the judicious choices of promoters to fine-tune timing and magnitude of expression under specified stress conditions. We can therefore contemplate engineering a range of transgenic lines designed to interfere with pathogen virulence strategies that target plant hormone signalling or deploy specific disease resistance genes. An advantage of such an approach is that hormonal signalling is generic so if this strategy is effective, it can be easily implemented in a range of crop species. Additionally, multiple re-wired lines can be crossed to develop more effective responses to pathogens.  相似文献   

16.
Gene disruption is a powerful genetic tool that can define pathogenic or virulence factors. In the past two years gene disruption approaches have been used to identify fungal virulence genes. The capsule genes, an alpha subunit of G protein and certain kinases of Cryptococcus neoformans have clearly been demonstrated to be associated with pathogenicity. In Candida albicans at least four genes involved in hyphal formation have been disrupted and tested for virulence. In other fungi, such as Histoplasma capsulatum, however, more efficient gene disruption methods need to be developed before such approaches can be regularly used for identifying virulence genes.  相似文献   

17.
Recently, mitochondria have been identified as important contributors to the virulence and drug tolerance of human fungal pathogens. In different scenarios, either hypo- or hypervirulence can result from changes in mitochondrial function. Similarly, specific mitochondrial mutations lead to either sensitivity or resistance to antifungal drugs. Here, we provide a synthesis of this emerging field, proposing that mitochondrial function in membrane lipid homeostasis is the common denominator underlying the observed effects of mitochondria in drug tolerance (both sensitivity and resistance). We discuss how the contrasting effects of mitochondrial dysfunction on fungal drug tolerance and virulence could be explained and the potential for targeting mitochondrial factors for future antifungal drug development.  相似文献   

18.
Invasion and colonization of host cells by bacterial pathogens depend on the activity of a large number of prokaryotic proteins, defined as virulence factors, which can subvert and manipulate key host functions. The study of host/pathogen interactions is therefore extremely important to understand bacterial infections and develop alternative strategies to counter infectious diseases. This approach however, requires the development of new high-throughput assays for the unbiased, automated identification and characterization of bacterial virulence determinants. Here, we describe a method for the generation of a GFP-tagged mutant library by transposon mutagenesis and the development of high-content screening approaches for the simultaneous identification of multiple transposon-associated phenotypes. Our working model is the intracellular bacterial pathogen Coxiellaburnetii, the etiological agent of the zoonosis Q fever, which is associated with severe outbreaks with a consequent health and economic burden. The obligate intracellular nature of this pathogen has, until recently, severely hampered the identification of bacterial factors involved in host pathogen interactions, making of Coxiella the ideal model for the implementation of high-throughput/high-content approaches.  相似文献   

19.
Escherichia coli serotyping and disease in man and animals.   总被引:13,自引:0,他引:13  
Serotyping of Escherichia coli is useful, but complex, with 173 O antigens, 80 K antigens, and 56 H antigens, which can all be subdivided into partial antigens. The O, K, and H antigens can be found in nature in many of the possible combinations. The final number of E. coli serotypes is very high, 50,000-100,000 or more. The number of frequent pathogenic serotypes is, however, limited. Two main groups of such frequent serotypes are (i) serotypes from diarrhoeal disease and (ii) serotypes from extraintestinal disease. Serotypes from diarrhoeal diseases are mostly species specific, and could at present be used as epidemiological markers for bacterial clones equipped with special virulence markers, such as toxins and adhesins. Their O-antigen lipopolysaccharides may be regarded as virulence factors. These strains are not inhabitants of the normal intestine. Serotypes from extraintestinal diseases constitute a different set of clones, which are good colonizers of the intestinal tract, that under certain conditions succeed in invading host tissues. They are characterized by virulence factors different from those found in strains from diarrhoeal disease. Thus, the two groups of pathogenic E. coli are both composed of a limited number of clones for which the O:K:H serotypes are excellent, although not faultless, markers.  相似文献   

20.
Studies on the genetic basis of bacterial pathogenicity have been undertaken for almost 30 years, but the development of new genetic tools in the past 10 years has considerably increased the number of identified virulence factors. Signature-tagged mutagenesis (STM) is one of the most powerful general genetic approaches, initially developed by David Holden and colleagues in 1995, which has now led to the identification of hundreds of new genes requested for virulence in a broad range of bacterial pathogens. We have chosen to present in this review, the most recent and/or most significant contributions to the understanding of the molecular mechanisms of bacterial pathogenicity among over 40 STM screens published to date. We will first briefly review the principle of the method and its major technical limitations. Then, selected studies will be discussed where genes implicated in various aspects of the infectious process have been identified (including tropism for specific host and/or particular tissues, interactions with host cells, mechanisms of survival and persistence within the host, and the crossing of the blood brain barrier). The examples chosen will cover intracellular as well as extracellular Gram-negative and Gram-positive pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号