首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After trypsinization and replating, BHK-21 cells spread and change shape from a rounded to a fibroblastic form. Time-lapse movies of spreading cells reveal that organelles are redistributed by saltatory movements from a juxtanuclear position into the expanding regions of cytoplasm. Bidirectional saltations are seen along the long axes of fully spread cells. As the spreading process progresses, the pattern of saltatory movements changes and the average speed of saltations increases from 1.7 MICROMETER/S during the early stages of spreading to 2.3 micrometer/s in fully spread cells. Correlative electron microscope studies indicate that the patterns of saltatory movements that lead to the redistribution of organelles during spreading are closely related to changes in the degree of assembly, organization, and distribution of microtubules and 10-nm filaments. Colchicine (10 microgram/ml of culture medium) reversibly disassembles the microtubule-10-nm filament complexes which form during cell spreading. This treatment results in the disappearance of microtubules and the appearance of a juxtanuclear accumulation of 10-nm filaments. These changes closely parallel an inhibition of saltatory movements. Within 30 min after the addition of the colchicine, pseudopod-like extensions form rapidly at the cell periphery, and adjacent organelles are seen to stream into them. The pseudopods contain extensive arrays of actinlike microfilament bundles which bind skeletal-muscle heavy meromyosin (HMM). Therefore, in the presence of colchicine, intracellular movements are altered from a normal saltatory pattern into a pattern reminiscent of the type of cytoplasmic streaming seen in amoeboid organisms. The streaming may reflect either the activity or the contractility of submembranous microfilament bundles. Streaming activity is not seen in cells containing well-organized microtubule-10-nm filament complexes.  相似文献   

2.
Using high-voltage and conventional electron microscopy of cell whole mounts, we have investigated the effects of tumor-conditioned medium and hypothalmus-derived growth factor on the structure of capillary endothelial cells during their attachment and spreading in tissue culture. Cells were cultured in A, Dulbecco's Modified Eagle's Medium (DMEM) and 10% calf serum; B, equal parts of A and 48 hr mouse sarcoma conditioned medium; and C, A containing 10 units of hypothalamus-derived growth factor. Cells cultured in all three media were fully spread, and to the same extent, by 4 hr after plating. While spreading, cells cultured in DMEM alone developed prominent stress fibers and contained numerous bundles of microtubules which formed radical tracts along which mitochondria and other organelles rapidly moved to the cell periphery. Stress fibers were thinner and microtubule tracts fewer in number in cells cultured in tumor-conditioned medium. In 4 hr, organelles moved only part of the distance to the cell margin. Stress fibers were rudimentary and microtubules randomly orientated in cells exposed to hypothalamus-derived growth factor. Most organelles remained near the cell nucleus. The dramatic decrease in stress fibers and microtubule tracts in cells grown in tumor-conditioned medium and hypothalamus-derived growth factor and the subsequent decreased capacity of the cells to move organelles toward their periphery could have some functional significance relative to the growth-promoting activity of these substances.  相似文献   

3.
The organization of microfilaments and microtubules in cultured cells before and after the addition of cytochalasin B (CB) was studied both by electron microscopy and immunofluorescence microscopy using antibodies specific for actin, tubulin and tropomyosin. CB induces a rapid disorganization of normal microfilament bundles. Star-like patches of actin and tropomyosin are visualized in immunofluorescence microscopy and dense aggregates of condensed microfilaments are seen in electron microscopy. The integrity of the microtubules is not changed by CB treatment. Addition of CB to glycerinated cells, in contrast to normal cells, does not result in the disorganization of microfilament bundles. CB-treated glycerinated models can still contract upon addition of ATP. Thus the CB-induced rearrangement of microfilament bundles occurs only in vivo and not in glycerinated cell contractility models.  相似文献   

4.
Fibroblasts alter their shape, orientation, and direction of movement to align with the direction of micromachined grooves, exhibiting a phenomenon termed topographic guidance. In this study we examined the ability of the microtubule and actin microfilament bundle systems, either in combination with or independently from each other, to affect alignment of human gingival fibroblasts on sets of micromachined grooves of different dimensions. To assess specifically the role of microtubules and actin microfilament bundles, we examined cell alignment, over time, in the presence or absence of specific inhibitors of microtubules (colcemid) and actin microfilament bundles (cytochalasin B). Using time-lapse videomicroscopy, computer-assisted morphometry and confocal microscopy of the cytoskeleton we found that the dimensions of the grooves influenced the kinetics of cell alignment irrespective of whether cytoskeletons were intact or disturbed. Either an intact microtubule or an intact actin microfilament-bundle system could produce cell alignment with an appropriate substratum. Cells with intact microtubules aligned to smaller topographic features than cells deficient in microtubules. Moreover, cells deficient in microtubules required significantly more time to become aligned. An unexpected finding was that very narrow 0.5-μm-wide and 0.5-μm-deep grooves aligned cells deficient in actin microfilament bundles (cytochalasin B-treated) better than untreated control cells but failed to align cells deficient in microtubules yet containing microfilament bundles (colcemid treated). Thus, the microtubule system appeared to be the principal but not sole cytoskeletal substratum-response mechanism affecting topographic guidance of human gingival fibroblasts. This study also demonstrated that micromachined substrata can be useful in dissecting the role of microtubules and actin microfilament bundles in cell behaviors such as contact guidance and cell migration without the use of drugs such as cytochalasin and colcemid.  相似文献   

5.
Electron microscopy was used to study the sites of formation of bundles of parallel microfilaments in the early stages of spreading of normal mouse embryo fibroblasts on the substrate. Bundles of microfilaments were not found in suspended cells. Contact of the surface of spherical cells with the substrate was not sufficient for the formation of bundles: these bundles were not seen near the under surface of cells that were already attached to the substrate but had not yet developed cytoplasmic outgrowths at their periphery. Peripheral cytoplasmic outgrowths (microspikes and lamellar processes) attached to the substrate were found to be the only sites of localization of the first bundles of microfilaments seen in the spreading cells. It is suggested that surface and/or cytoplasm of the newly-formed peripheral cytoplasmic outgrowth may have some special properties necessary for the initiation of the development of microfilament bundles.  相似文献   

6.
The repair of small endothelial wounds is an important process by which endothelial cells maintain endothelial integrity. An in vitro wound model system was used in which precise wounds were made in a confluent endothelial monolayer. The repair process was observed by time-lapse cinemicrophotography. Using fluorescence and immunofluorescence microscopy, the cellular morphological events were correlated with the localization and distribution of actin microfilament bundles and vinculin plaques, and centrosomes and their associated microtubules. Single to four-cell wounds underwent closure by cell spreading while wounds seven to nine cells in size closed by initially spreading which was then followed at approximately 1 h after wounding by cell migration. These two processes showed different cytoskeletal patterns. Cell spreading occurred independent of centrosome location. However, centrosome redistribution to the front of the cell occurred as the cells began to elongate and migrate. While the peripheral actin microfilament bundles (i.e., the dense peripheral band) remained intact during cell spreading, they broke down during migration and were associated with a reduction in peripheral vinculin plaque staining. Thus, the major events characterizing the closure of endothelial wounds were precise in nature, followed a specific sequence, and were associated with specific cytoskeletal patterns which most likely were important in maintaining directionality of migration and reducing the adhesion of the cells to their neighbors within the monolayer.  相似文献   

7.
In the present work the behavior of mitochondria and lysosomes during cell spreading has been investigated in normal conditions and under ATP-synthesis inhibitors: sodium aside and N,N-dicyclohexylcarbodiimide (DCCD). In the control culture, microtubules run along the stable edge and perpendicular to the leading edge in most of spreading cells. As a whole, microtubules form a dense network in these cells. However, the radial cells contain bundles of microtubules, radiating from the perinuclear area or form circular arrays around the nucleus. The microtubule network is more dense under inhibitory treatment, than in control conditions. In the control culture the spherical cells display numerous small mitochondria (staining with Rhodamine 123). In the process of cell spreading some elongated mitochondria appear, most of them being localized in the perinuclear area. The mitochondria of cells with radial microtubule organization are directed towards the cell periphery, while in cells with circular bundles of microtubules the mitochondria are localized chaotically. Under DCCD treatment the mitochondria retain the staining for 2-3 h. In the spreading cells, round mitochondria may be distributed all over the cytoplasm. In the presence of sodium aside the mitochondria are not stained. However, by means of phase contrast microscopy some disoriented thread-shaped structures are observed, obviously corresponding to mitochondria. In the control conditions, lysosomes (stained with Acridine orange) in spreading cells are dispersed chaotically, all over the cytoplasm, or are localized in the perinuclear area. In the presence of sodium aside lysosomes are observed only in the perinuclear area. Under DCCD treatment lysosomes do not accumulate the dye. Thus, the cytoskeleton modification and changes in the properties of membrane organelles, induced by ATP-synthesis inhibitors, do not prevent attachment, spreading or cell polarization.  相似文献   

8.
T M Svitkina 《Tsitologiia》1989,31(10):1158-1164
Spreading of mouse embryo fibroblasts in the presence of cytochalasin D (1 microgram/ml) was studied using scanning electron microscopy, immunofluorescence, and electron microscopy of platinum replicas. Whereas circular lamellae were formed around the cell body during normal spreading, separate processes appeared at the cell periphery during spreading in cytochalasin-containing medium. The processes gradually elongated and branched. Cytoskeletons of fibroblasts spreading in the cytochalasin-containing medium were obtained by Triton X-100 extraction. They contained microtubules, intermediate filaments, actin "paracrystals" looking like short microfilament bundles, and patches of a meshwork-granular material. Immunogold coating of the cytoskeletons with anti-actin antibody showed that some meshwork-granular patches were decorated with gold particles, whereas the others were not. Non-actin patches were usually located on the distal ends of the processes, thus leaving behind the actin cytoskeletal components during the process growth. Another characteristic feature of this unidentified material is its usual association with the substratum and microtubules. These results suggest that the process protrusion during cell spreading in cytochalasin-containing medium may occur not due to actin polymerization as in the control cells, but due to involvement of some other non-actin cytoskeletal components. These components seem to be able to move along microtubules and to bind to the substratum.  相似文献   

9.
In response to externally applied shear stress, cultured endothelial monolayers develop prominent, axially-aligned, microfilamentous bundles, termed "stress fibers" (Dewey: Journal of Biomechanical Engineering 106:31-35, 1984; Franke et al.: Nature 81:570-580, 1984; Franke et al.: Klin. Wochenschr 64:989-992, 1986; Wechezak et al.: Laboratory Investigation 53:639-647, 1985). It is unclear, however, whether similar stress fibers develop in noncontiguous endothelial cells and whether these structures are necessary for adherence of individual cells under shear stress. It also is unknown what alterations occur in microtubules, intermediate filaments, and focal contacts as a consequence of shear stress. In this study, endothelial cells, free of intercellular contact, were exposed to 93 dynes/cm2 for 2 hr. With the aid of specific labeling probes and interference reflection microscopy, the distributional patterns of microfilaments, microtubules, intermediate filaments, and focal contacts were examined. Following shear stress, microfilament bundles and their associated focal contacts were concentrated in the proximal (relative to flow direction) cell regions. In contrast, microtubules were distributed uniformly within cell contours. Intermediate filaments displayed only an occasional tendency for accumulation at proximal edges. When cells were shear-tested in the presence of cytochalasin B to inhibit microfilament assembly, considerable cell loss occurred. Following inhibition of tubulin polymerization, no increase was observed in the percentage of cells lost due to shear over nontreated controls. Nocodazole-treated cells, however, were characterized by prominent stress fibers throughout the cell. These results indicate that stress fiber and focal contact reorganization represent major responses in isolated endothelial cells exposed to shear stress and that these cytoskeletal structures are necessary for adherence.  相似文献   

10.
Fish chromatophores serve as excellent study models for cytoskeleton-dependent organelle translocations because the distribution of pigmentary organelles can be observed against a time frame by microscopy. In this study the distribution of microfilaments along with microtubules in cultured melanophores of the killifish (Fundulus heteroclitus Linneaus) are examined using whole-cell transmission electron microscopy (WCTEM), fluorescence, and laser scanning confocal microscopy. Dispersing, dispersed, aggregating and aggregated states of pigment are induced by adding either caffeine (for dispersion) or epinephrine (for aggregation) to the cells in a standard culture medium. The cells that exhibited a random melanosome distribution in the standard culture media without these two reagents, served as the control. The results indicate that: (i) a structure considered to be the actin-filament organizing center (AFOC) is in close proximity to the microtubule-organizing center (MTOC); (ii) the radial layout of microfilaments remains similar over four physiological states of pigmentary response with the exception of epinephrine-aggregated pigment, in which the aggregate blocks the viewing of the AFOC and central microfilament rays, yet radial microfilaments, whether central and/or peripheral, are apparent in all physiological states of distribution; and (iii) microfilaments serve, together with microtubules, as scaffolding for melanosomes which migrate in bi-directional rows on cross-bridges, thus shedding light on the mechanisms for orderly melanosome translocations in a structural continuum.  相似文献   

11.
The transmural passage of malignant blood cells from the extravascular parenchyma into sinusoidal lumen has been studied in the bone marrow of rats with myelogenous leukemia. The Shay myelogenous leukemia was chosen as a model system because an increased bone marrow cellularity is, in this leukemia, usually accompanied by an increase in circulating myeloid cells. By means of light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) it was found that the sinusoidal endothelial lining of the bone marrow remains intact and continuous even in advanced stages of the disease. SEM shows that the malignant myeloblast-like cell enters the sinusoidal lumen by means of a temporary migration pore, which appears only during the transmural passage of the cell. Certain nondegenerative changes in the sinusoidal blood vessels are associated with the myelogenous leukemia. The normal radial alignment of sinusoids about the central sinusoid is changed into a tortuous pattern, and intraluminal cytoplasmic bridges which impede the blood flow are formed by the endothelial cells.  相似文献   

12.
Embryonal carcinoma (EC) cells and differentiated derivatives grown in tissue culture have rather similar amounts of actin and tubulin. Indirect immunofluorescent microscopy with antibodies to actin shows striking differences in the actin organization in the different teratocarcinoma derivatives. In the EC cells, actin is found predominantly in ruffles and in surface protrusions, as well as in the cytoplasm, but microfilament bundles are not seen. Some of the differentiated clones contain strongly stained microfilament bundles; others contain actin arrangements which appear to be characteristic of the particular cell type. Indirect immunofluorescence microscopy with antibody to tubulin suggests that cytoplasmic microtubules are present both in the EC cells and in the various differentiated states studied. However, the ease with which microtubules can be documented is dependent on how cells are spread on the substratum. During in vitro differentiation of EC cells, changing patterns of actin distribution appear. Cells at the edge of the colony show the characteristic changes in microfilament and microtubular organization before those in the center.  相似文献   

13.
T M Svitkina 《Tsitologiia》1988,30(7):861-866
Spread fibroblasts contain a dense microfilament sheath under the dorsal cell surface in the endoplasmic region. The formation of the sheath during spreading of mouse embryo fibroblasts was studied using electron microscopy of platinum replicas. At the first stages of spreading the actin meshwork comprising the pseudopodial cytoskeleton arises at the cell edges. The actin of unattached pseudopodia moves centripetally and forms a circular microfilament bundle at the endoplasm periphery. Simultaneously, the microfilament cortex in the endoplasm appears to disassemble. Due to a continuous supply of polymerized actin from the periphery to the circular bundle the latter becomes wider to cover gradually the endoplasm and to form the microfilament sheath. Anchoring of centripetally moving microfilaments at the sites of cellular contacts with the substratum leads to the formation of radial actin bundles.  相似文献   

14.
The distribution of actin microfilament bundles in cell lines 3T3B, CHO, HeLa and CLID extracted with 0.1% Triton X-100 was examined by indirect immunofluorescence using human actin antibodies and by electron microscopy of whole cells grown directly on support grids. Anchorage dependence as determined by growth in soft agar and tumorigenicity in nude mice was also investigated. Immunofluorescent staining showed that CHO and HeLa cells have normal numbers and distributions of actin microfilament bundles as compared with similarly spread control 3T3B cells. A significant fraction of the mouse CLID cells showed comparable numbers of microfilament bundles as 3T3B cells but their distribution was markedly different. In many cases the bundles radiated from a region close to the cell's centre or near its projections and usually penetrated the projections. The presence of diffuse staining in 4% of the cell population also indicated the existence in these cells of disorganized actin. Electron microscope studies of well spread regions of negatively-stained, Triton-extracted cells corroborated the observations made with the immunofluorescence technique. In 3T3B, CHO and CLID cells abundant microtubules were found, colinearly arranged with actin filaments in the thin cytoplasmic extensions. While CLID, CHO and HeLa cells showed the capacity to grow in soft agar, only CLID and HeLa cells produced tumours in athymic nude mice. The observations suggest that a reduction or disorganisation of the actin microfilament bundles may not in itself be essential at least for the non-virally transformed cells studied to show anchorage independence or to produce tumours in nude mice.  相似文献   

15.
cAMP/theophylline exaggerates cell shape—whether the fibroblastic morphology of controls or the epithelioid shape of colchicine-treated cells. The ultrastructural basis is that cAMP/theophylline increases the number and linearity of microtubules and microfilament bundles, although where also treated with colchicine, the cells adopt a well-spread shape maintained by microfilament bundles alone. Since interference reflection microscopy shows that colchicine promotes the marked alignment of focal contacts (which terminate microfilament bundles) it is concluded that microtubules encourage angular cell form and modify the pattern of adhesions by influencing the directionality of microfilament bundle formation although they are inessential for the maintenance of the spread form or adhesion per se.  相似文献   

16.
The ultrastructure of portions of the arterial and venous systems of the 11.5 day old Wistar rat embryos has been studied by scanning and transmission electron microscopy. The vessels at this stage of development are in the form of capillaries, and the arterial and venous types can be distinguished by the morphology of the endothelial cells by SEM. The endothelial cells of the arterial vessels gave prominent nuclear bulges and numerous microvilli apart from their spindle shape, whilst those of the veins appear flattened, are polygonal in shape, and have few microvilli. Transmission electron microscopy shows that the endothelial cells of the arteries and veins are identical in structure. The ultrastructure of these cells resembles that of endothelial cells at later stages of development including the adult type in that mature forms of cytoplasmic organelles are obtained. In studies on the intercellular junctions and fenestrations with lanthanum nitrate, the impression is formed that the vessels at this stage are impermeable to small molecular size particles, compared with adult capillaries. This suggests that cytoplasmic vesicles must play a major role in the transport of macromolecules in the 11.5 day embryonic vessels.  相似文献   

17.
Spreading and orientation of epithelial cells on grooved substrata   总被引:4,自引:1,他引:3  
The spreading and orientation of epithelial (E) cells was studied on titanium-coated grooved substrata by light, transmission (TEM) and scanning electron microscopy (SEM). Vertical-walled grooves and V-shaped grooves, 3-60 microns deep, were produced in silicon wafers by micromachining, a process which was developed for the fabrication of micro-electronic components, and the grooved substrata were replicated in Epon. Photolithography was used to prepare photoresist-based and silicon dioxide-silicon substrata with grooves of approximately 2 and approximately 0.5 micron deep, respectively. Cell clusters were markedly oriented by all the grooved substrata examined, with the orientation index being highest for substrata with grooves of the smallest repeat spacing. Time-lapse cinemicrography showed that the grooves directed the migration of E cells, but the control was not absolute, as some cells crossed over the ridges and descended into the grooves. The 0.5 micron grooves appeared less effective than the deeper grooves in directing cell locomotion. SEM and TEM of E cells spreading on the grooved substrata demonstrated that cell processes, including lamellae and filopodia, were capable of bending around and closely adapting to groove edges. E cells did not flatten as extensively on a substratum with 22 microns deep V-shaped grooves as on a smooth surface, although some cells were markedly elongated. One mechanism proposed to explain contact guidance of fibroblasts is that linear elements of the locomotory system, such as microfilament bundles, are unable to operate when bent. The observed flexibility of epithelial cell processes and the ability of substrata with shallow grooves to orient E cells indicate that contact guidance of E cells on micromachined substrata cannot be explained by the mechanical stiffness of long linear cytoskeletal elements.  相似文献   

18.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

19.
Some cytoplasmic organelles have showed characteristic variations which are related to the different cell cycle phases, in thymidine synchonized HeLa cells in culture. In these cells, the most modified organelles were intracytoplasmic membranes (endoplasmic reticulum) and microfilament arrangements. Microfilaments were numerous under the cell membrane, but also some of them were dispersed in dense bundles. These structures were seen around the nucleus, 12-14 h after removal of excess thymidine (G1). They migrated to the periphery of the cell during S and G2. During mitosis, they were directly under superficial membrane-associated microfilaments.  相似文献   

20.
The same cytologic material was successively examined by light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After the SEM examination, the specimens were rehydrated for a long period of time to allow the penetration of Epon 812 into the cells. The TEM examination showed the cell organelles to be comparatively well preserved. These consecutively performed LM-SEM-TEM examinations provided useful information on cytologic subjects, especially concerning the origin of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号