首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
We measured steady state and time-resolved resonance energy transfer between donors and acceptors in model membranes. The donor was a long lifetime rhenium-lipid complex, which displayed a mean lifetime of 1 microsecond and lifetime components as long as 3 microseconds in the labeled DOPC membranes. The transfer efficiencies were found to be substantially larger than those predicted without consideration of lateral diffusion. The larger transfer efficiencies are consistent with a mutual lateral diffusion coefficient in the membrane near 2 x 10(-8) cm2/s. These results demonstrate that lateral diffusion in membranes can be detected with microsecond lipid probes.  相似文献   

2.
Lanthanide chelates used as donors offer several advantages over classical fluorescence probes in resonance energy transfer distance measurements. One of these advantages is that energy transfer can be conveniently measured using sensitized acceptor decay measurements. In these measurements a long microsecond lifetime of the lanthanide donor and a short nanosecond lifetime of the acceptor allow elimination of a signal from the unquenched donor. Therefore, the decay of sensitized acceptor emission reflects decay properties of the donor engaged in energy transfer. The purpose of this work is to point out the importance of the fact that the amplitude of the sensitized acceptor signal is dependent on the resonance energy transfer rate constant. Thus, in the case where there are two or more populations of donors with different energy transfer rate constants, the relative amplitudes of corresponding decay components observed in sensitized acceptor emission do not represent the relative populations of the donors. We use simulations to show that these effects can be very significant. A minor population of donors with a high rate of energy transfer can produce sensitized acceptor decay which is dominated by a decay component corresponding to this minor donor population. Using a simple experimental system of rapid diffusion limit energy transfer between a europium chelate and Cy5 acceptor we show that the predicted dependency of sensitized acceptor decay amplitude on the energy transfer rate is indeed observed. We suggest that the relative importance of decay components observed in sensitized acceptor emission should be evaluated after an appropriate correction of their values such that they properly reflect possible different populations of donors. We describe a method to perform such correction.  相似文献   

3.
Fluorescence energy transfer is widely used for determination of intramolecular distances in macromolecules. The time dependence of the rate of energy transfer is a function of the donor/acceptor distance distribution and fluctuations between the various conformations which may occur during the lifetime of the excited state. Previous attempts to recover both distance distributions and segmental diffusion from time-resolved experiments have been unsuccessful due to the extreme correlation between fitting parameters. A method has been developed, based on global analysis of both donor and acceptor fluorescence decay curves, which overcomes this extreme cross-correlation and allows the parameters of the equilibrium distance distributions and intramolecular diffusion constants to be recovered with high statistical significance and accuracy. Simulation studies of typical intramolecular energy transfer experiments reveal that both static and dynamic conformational distribution information can thus be obtained at a single temperature and viscosity.  相似文献   

4.
A diffusion-enhanced energy transfer technique was employed for the determination of transmembrane location of the retinal chromophore in the purple membrane. Theoretical considerations showed that the rate of energy transfer from an energy donor embedded within a membrane to acceptors dissolved in solvent could be described by an analytical function of the distance a of closest approach between the donor and acceptor, if the "rapid-diffusion limit" was attained. The criterion for this limit was given by the relation: (RO)6 much less than 20D tau Da4, where RO is the characteristic distance of energy transfer, D is the diffusion coefficient of the acceptor and tau D is the fluorescence lifetime of the donor in the absence of acceptor. By photo-reduction of the purple membrane with sodium borohydride, the retinal chromophore was converted to a highly fluorescent derivative, which showed a broad emission band in the visible region. From analysis of the fluorescence decay curves of the photo-reduced purple membrane in the presence of various concentrations of cobalt-ethylenediamine tetraacetate (Co-EDTA: energy acceptor), the depth of the chromophore from the membrane surface was estimated to be 8 (+/-3) A. This result was supported by investigations of energy transfer processes in a system where the native purple membranes and the photo-reduced membranes were stacked in parallel: the energy acceptor in this system was the native retinal chromophore.  相似文献   

5.
Based on experimental data from fermentation runs, as well as from L-phenylalanine (l-Phe) separation studies, a simple model is presented that describes the total ISPR approach for on-line L-Phe separation. While fermentation process modeling via a macrokinetic model revealed an L-Phe inhibition constant of 20 +/- 1.35 g/L using recombinant E. coli cells, the reactive-extraction process modeling identified the L-Phe cation diffusion in the aqueous donor film and the transport of the lowly soluble carrier/L-Phe complex in the aqueous acceptor film as the most dominant transfer steps. The corresponding mass transfer coefficients were estimated as k(PheD) = 128 x 10(-7) cm/s (extraction) and k(CPheA) = 178 x 10(-5) cm/s (back-extraction). Simulation studies were performed for the total ISPR approach, which gave hints for strategies of further process optimization.  相似文献   

6.
An image-based technique of fluorescence recovery after photobleaching (video-FRAP) was used to measure the lateral diffusion coefficients of a series of nine fluorescent probes in two model lipid bilayer systems, dimyristoylphosphatidylcholine (DMPC) and DMPC/cholesterol (40 mol%), as well as in human stratum corneum-extracted lipids. The probes were all lipophilic, varied in molecular weight from 223 to 854 Da, and were chosen to characterize the lateral diffusion of small compounds in these bilayer systems. A clear molecular weight dependence of the lateral diffusion coefficients in DMPC bilayers was observed. Values ranged from 6.72 x 10(-8) to 16.2 x 10(-8) cm2/s, with the smaller probes diffusing faster than the larger ones. Measurements in DMPC/cholesterol bilayers, which represent the most thorough characterization of small-solute diffusion in this system, exhibited a similar molecular weight dependence, although the diffusion coefficients were lower, ranging from 1.62 x 10(-8) to 5.60 x 10(-8) cm2/s. Lateral diffusion measurements in stratum corneum-extracted lipids, which represent a novel examination of diffusion in this unique lipid system, also exhibited a molecular weight dependence, with values ranging from 0.306 x 10(-8) to 2.34 x 10(-8) cm2/s. Literature data showed that these strong molecular weight dependencies extend to even smaller compounds than those examined in this study. A two-parameter empirical expression is presented that describes the lateral diffusion coefficient in terms of the solute's molecular weight and captures the size dependence over the range examined. This study illustrates the degree to which small-molecule lateral diffusion in stratum corneum-extracted lipids can be represented by diffusion in DMPC and DMPC/cholesterol bilayer systems, and may lead to a better understanding of small-solute transport across human stratum corneum.  相似文献   

7.
J V Mersol  H Wang  A Gafni    D G Steel 《Biophysical journal》1992,61(6):1647-1655
Dipole-dipole energy transfer between suitable donor and acceptor chromophores is an important luminescence quenching mechanism and has been shown to be useful for distance determination at the molecular level. In the rapid diffusion limit, where the excited-state lifetime of the donor is long enough to allow the donor and acceptor to diffuse many times their average separation before deexcitation, it is usually assumed that the relative dipolar orientation is completely averaged due to rotational Brownian motion. Under this simplifying assumption, analytical expressions have been derived earlier for the energy transfer rate between donor and acceptor characterized by different geometries. Most such expressions, however, are only approximate because complete angular averaging is permitted only in a geometry that possesses spherical symmetry surrounding each chromophore. In this paper analytical expressions that correctly account for incomplete angle averaging due to steric hindrance are presented for several geometries. Each of the equations reveals a dependence of the energy transfer rate on chromophore orientation. It is shown that correctly accounting for this effect can lead to improvements in estimates of the distance of closest approach from measured quenching rates based on energy transfer experiments.  相似文献   

8.
Quenching of pyrene fluorescence by oxygen was used to determine oxygen diffusion coefficients in phospholipid dispersions and erythrocyte plasma membranes. The fluorescence intensity and lifetime of pyrene in both artificial and natural membranes decreases about 80% in the presence of 1 atm O2, while the fluorescence excitation and emission spectra and the absorption spectrum are unaltered. Assuming the oxygen partition coefficient between membrane and aqueous phase to be 4.4, the diffusion coefficients for oxygen at 37 degrees C are 1.51 X 10(-5) cm2/s in dimyristoyl lecithin vesicles, 9.32 X 10(-6) cm2/s in dipalmitoyl lecithin vesicles, and 7.27 X 10(-6) cm2/s in erythrocyte plasma membranes. The heats of activation for oxygen diffusion are low (less than 3 kcal/degree-mol). A dramatic increase in the diffusion constant occurs at the phase transition of dimyristoyl and dipalmitoyl lecithin, which may result from an increase in either the oxygen diffusion coefficient, partition coefficient, or both. The significance of the change in oxygen diffusion below and above the phase transition for biological membranes is discussed.  相似文献   

9.
A novel technique for modelling intramolecular energy transfer is presented. Brownian dynamics calculations are used to compute the trajectories of donor and acceptor species, and the instantaneous orientation factor is calculated during each temporal iteration. In this work, several model systems are considered. Trajectories were computed for energy transfer between a flexible donor and a rigidly fixed acceptor. We have considered configurations where the donor is, (1) tethered to a fixed point in space, but free to diffuse rotationally, and (2) constrained to wobble in a cone. The luminescence decay of the donor is ‘measured’, and a non-single-exponential decay is observed for configurations of efficient energy transfer. Luminescence anisotropy measurements of constrained and unconstrained donors reflect the contribution of both energy transfer and rotational diffusion to the shape of the anisotropy decay curve.  相似文献   

10.
The translational mobility of fluorescent-labeled monoclonal antibodies specifically bound to supported phospholipid bilayers containing hapten-conjugated phospholipids has been measured as a function of the surface concentration of bound antibodies using fluorescence recovery after photobleaching. Fluorescence recovery curves are fit well by a model that assumes the presence of two populations of antibodies with different lateral diffusion coefficients. The larger diffusion coefficient equals 3.5 x 10(-9) cm2/s, the smaller diffusion coefficient ranges from 1.5 x 10(-9) cm2/s to 2.5 x 10(-10) cm2/s, and the fractional fluorescence recovery associated with the smaller coefficient increases from approximately 0 to approximately 0.7 with increasing concentration of bound antibody. These results suggest that complexes of haptenated phospholipids and antibodies in phospholipid Langmuir-Blodgett films form clusters or domains in a concentration-dependent fashion.  相似文献   

11.
Intracellular diffusion of water   总被引:10,自引:0,他引:10  
Self-diffusion of cell water has been measured at diffusion times ranging from 0.3 ms to 1.0 s for human red cells, yeast, and brine shrimp using various pulsed gradient NMR methods. Intracellular diffusion coefficients and membrane permeabilities are calculated from these data with the aid of previous theoretical results for regularly spaced permeable planar barriers. The intracellular diffusion coefficients of water range from 1.2 X 10(-6) to 6 X 10(-6) cm2/s for the various samples. Outer-membrane permeabilities to water range from 0.0001 to 0.01 cm/s. The self-diffusion coefficient of lipid in a sample of human breast adipose tissue was found to be 1.5 X 10(-7) cm2/s.  相似文献   

12.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

13.
Otto H  Lamparter T  Borucki B  Hughes J  Heyn MP 《Biochemistry》2003,42(19):5885-5895
We investigated the dimerization of phytochrome Cph1 from the cyanobacterium Synechocystis by fluorescence resonance energy transfer (FRET). As donor we used the chromophore analogue phycoerythrobilin (PEB) and as acceptor either the natural chromophore phycocyanobilin (PCB; hetero transfer) or PEB (homo transfer). Both chromophores bind in a 1:1 stoichiometry to apo-monomers expressed in Escherichia coli. Energy transfer was characterized by time-resolved fluorescence intensity and anisotropy decay after excitation of PEB by picosecond pulses from a tunable Ti-sapphire laser system. ApoCph1 was first assembled with PEB at a low stoichiometry of 0.1. The remaining sites were then sequentially titrated with PCB. In the course of this titration, the mean lifetime of PEB decreased from 3.33 to 1.25 ns in the P(r) form of Cph1, whereas the anisotropy decay was unaffected. In the P(fr)/P(r) photoequilibrium (about 65% P(fr)), the mean lifetime decreased significantly less, to 1.67 ns. These observations provide strong support for inter-chromophore hetero energy transfer in mixed PEB/PCB dimers. The reduced energy transfer in P(fr) may be due to a structural difference but is at least in part due to the difference in spectral overlap, which was 4.1 x 10(-13) and 1.6 x 10(-13) cm(3) M(-1) in P(r) and P(fr), respectively. From the changes in the mean lifetime, rates of hetero energy transfer of 0.68 and 0.37 ns(-1) were calculated for the P(r) form and the P(fr)/P(r) photoequilibrium, respectively. Sequential titration of apo Cph1 with PEB alone to full occupancy did not affect the intensity decay but led to a substantial increase in depolarization. This is the experimental signature of homo energy transfer. Values for the rate of energy transfer k(HT) (0.47 ns(-1)) and the angle 2theta between the transition dipole moment directions (2theta = 45 +/- 5 degrees) were determined from an analysis of the concentration dependence of the anisotropy at five different PEB/Cph1 stoichiometries. The independently determined rates of hetero and homo energy transfer are thus of comparable magnitude and consistent with the energy transfer interpretation. Using these results and exploiting the 2-fold symmetry of the dimer, the chromophore-chromophore distance R(DA) was calculated and found to be in the range 49 A < R(DA) < 63 A. Further evidence for energy transfer in Cph1 dimers was obtained from dilution experiments with PEB/PEB dimers: the lifetime was unchanged, but the anisotropy increased as the dimers dissociated with increasing dilution. These experiments allowed a rough estimate of 5 +/- 3 microM for the dimer dissociation constant. With the deletion mutant Cph1Delta2 that lacks the carboxy terminal histidine kinase domain less energy transfer was observed suggesting that in this mutant dimerization is much weaker. The carboxy terminal domain of Cph1 that is involved in intersubunit trans-phosphorylation and signal transduction thus plays a dominant role in the dimerization. The FRET method provides a sensitive assay to monitor the association of Cph1 monomers.  相似文献   

14.
Surface diffusion in human serum lipoproteins   总被引:1,自引:0,他引:1  
From the viscosity dependence of the 31P NMR signals, the diffusion coefficients DT of phospholipid molecules in the surface monolayer of HDL, LDL and VLDL have been determined. DT for HDL3 and HDL2 are found to be 2.3 X 10(-8) cm2/s and 1.8 X 10(-8) cm2/s, respectively. These values are similar to values reported for diffusion of phospholipid molecules in phospholipid bilayers above the gel to liquid crystalline phase transition temperature. Viscosity dependence of [16,16,16-2H3]phosphatidylcholine incorporated into HDL2 yielded a value similar to that determined by 31P (DT = 1.9 X 10(-8) cm2/s). Slower diffusion coefficients were measured for LDL2 and VLDL. VLDL had a value DT = 9.1 X 10(-9) cm2/s. The diffusion coefficient for LDL2 was 1.4 X 10(-9) cm2/s. Thus, diffusion of phospholipids in LDL2 is a full order of magnitude slower at 25 degrees C than diffusion of phospholipids in the HDLs.  相似文献   

15.
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells.  相似文献   

16.
The lateral diffusion constants of 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC), water, and ibuprofen were measured in multilamellar liposomes using pulsed field gradient magic-angle spinning (PFG-MAS) (1)H NMR. The analysis of diffusion data obtained in powder samples and a method for liposome curvature correction are presented. At 322 K POPC has a diffusion constant of (8.6 +/- 0.2) x 10(-12) m(2)/s when dehydrated (8.2 waters/lipid) and (1.9 +/- 0.1) x 10(-11) m(2)/s in excess water. The diffusion constant of water in dehydrated POPC was found to be (4.7 +/- 0.1) x 10(-10) m(2)/s. The radius of curvature is 21 +/- 2 microm for the dehydrated sample and 4.5 +/- 0.5 microm for POPC sample containing excess water. The activation energies of diffusion are 40.6 +/- 0.4 kJ/mole for dehydrated POPC, 30.7 +/- 0.9 kJ/mole for POPC with excess water, and 28.6 +/- 1.5 kJ/mole for water in dehydrated POPC. The diffusion constants and activation energies for a sample of POPC/ibuprofen/water (1:0.56:15) were also measured. The ibuprofen, which locates in the lipid-water interface, diffuses faster than POPC but has a slightly higher activation energy of lateral diffusion. Within certain restrictions, PFG-MAS NMR provides a useful method for characterizing membrane organization and mobility.  相似文献   

17.
A novel immunosystem is described that exploits the effect of luminescence energy transfer from a luminescently labeled antigen to a fluorescent antibody. A luminescent ruthenium-ligand complex (D-455) with absorption/emission maxima at 456/639 nm, respectively, was employed as the donor label, and a squaraine-type cyanine label (636/655 nm), as the fluorescent acceptor label. Specifically, the system human serum albumin (HSA)/anti-HSA was studied. HSA was labeled with the donor dye D-455, and anti-HSA was labeled with the acceptor dye A-631. On formation of the antigen-antibody complex, energy transfer occurs. The radiationless energy transfer affects both the decay time of D-455 and the intensities of the emissions of both D-455 and A-631. The decay time of around 500 ns of D-455 allows frequency-domain measurements in the low kilohertz range and therefore can be based on the use of conventional optoelectronics. This also suggests gated measurements to be performed. The major difference from existing HSA immunosystems is the use of a slow decaying ruthenium-ligand complex as the donor and of a long-wave emitting cyanine acceptor dye having a high quantum yield and a decay kinetics that is governed by the rate of energy transfer from the slow decaying donor.  相似文献   

18.
In two-color fluorescence correlation spectroscopy (TCFCS), the fluorescence intensities of two fluorescently-labeled species are cross-correlated over time and can be used to identify static and dynamic interactions. Generally, fluorophore labels are chosen that do not undergo F?rster resonance energy transfer (FRET). Here, a general TCFCS theory is presented that accounts for the possibility of FRET between reactants in the reversible bimolecular reaction, [reaction: see text] where k(f) and k(b) are forward and reverse rate constants, respectively (dissociation constant K(d) = k(b)/k(f)). Using this theory, we systematically investigated the influence on the correlation function of FRET, reaction rates, reactant concentrations, diffusion, and component visibility. For reactants of comparable size and an energy-transfer efficiency of approximately 90%, experimentally measurable cross-correlation functions should be sensitive to reaction kinetics for K(d) > 10(-8) M and k(f) >or= approximately 10(7) M(-1)s(-1). Measured auto-correlation functions corresponding to donor and acceptor labels are generally less sensitive to reaction kinetics, although for the acceptor, this sensitivity increases as the visibility of the donor increases relative to the acceptor. In the absence of FRET or a significant hydrodynamic difference between reactant species, there is little effect of reaction kinetics on the shape of auto- and cross-correlation functions. Our results suggest that a subset of biologically relevant association-dissociation kinetics can be measured by TCFCS and that FRET can be advantageous in enhancing these effects.  相似文献   

19.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

20.
The patching and endocytosis of EGF (epidermal growth factor) bound to A-431 cells (a human epidermoid carcinoma line) are temperature-sensitive processes which are completely inhibited at 4 degrees C. Receptor-mediated endocytosis generally occurs through coated regions, and EGF bound to its membrane receptor must diffuse laterally to these points of internalization. In this work we investigated the thermal sensitivity of the lateral diffusion of EGF receptor complexes and the thermal sensitivity of the patching and endocytosis of the hormone receptor complexes. Using the fluorescence photobleach recovery technique, we measured the lateral diffusion coefficients of a fluorescent derivative of EGF as a function of temperature. The lateral diffusion coefficient (D) increased gradually from 2.8 X 10(-10) cm2/s at 5 degrees C to 8.5 X 10(-10) cm2/s at 37 degrees C, and no phase transition was detected. Neither was a phase transition detected when we measured the diffusion coefficient of fluorescent lipid probes over this temperature range. From a calculation of the collision frequency of the occupied EGF receptors with coated regions using our measured values of D at 5 and 37 degrees C, we conclude that diffusion is not the rate-limiting step for either endocytosis or patching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号