首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

2.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

3.
The complete mitochondrial genomes of two basal anurans, Bombina bombina and B. variegata (Anura; Bombinatoridae), were sequenced. The gene order of their mitochondrial DNA (mtDNA) is identical to that of canonical vertebrate mtDNA. In contrast, we show that there are structural differences in regulatory regions and protein coding genes between the mtDNA of these two closely related species. Corrected sequence divergence between the mtDNA of B. bombina and B. variegata amounts to 8.7% (2.3% divergence in amino acids). Comparisons with two East Asian congeners show that the control region contains two repeat regions, LV1 and LV2, present in all species except for B. bombina, in which LV2 has been secondarily lost. The rRNAs and tRNAs are characterized by low nucleotide divergence. The protein coding genes are considerably more disparate, although functional constraint is high but variable among genes, as evidenced by dN/dS ratios. A mtDNA phylogeny established the distribution of autapomorphic nonsynonomous substitutions in the mitogenomes of B. bombina and B. variegata. Nine of 98 nonsynonomous substitutions led to radical amino acid replacements that may alter mitochondrial protein function. Most radical substitutions were found in ND2, ND4, or ND5, encoding mitochondrial subunits of complex I of the electron transport system. The extensive divergence between the mitogenomes of B. bombina and B. variegata is discussed in terms of its possible role in impeding gene flow in natural hybrid zones between these two species.  相似文献   

4.
Summary Segments of the Japanese quail mito-chondrial genome encompassing many tRNA and protein genes, the small and part of the large rRNA genes, and the control region have been cloned and sequenced. Analysis of the relative position of these genes confirmed that the tRNAGlu and ND6 genes in galliform mitochondrial DNA are located immediately adjacent to the control region of the molecule instead of between the cytochrome b and ND5 genes as in other vertebrates. Japanese quail and chicken display another distinctive characteristic, that is, they both lack an equivalent to the light-strand replication origin found between the tRNACys and tRNAAsn genes in all vertebrate mitochondrial genomes sequenced thus far. Comparison of the protein-encoding genes revealed that a great proportion of the substitutions are silent and involve mainly transitions. This bias toward transitions also occurs in the tRNA and rRNA genes but is not observed in the control region where transversions account for many of the substitutions. Sequence alignment indicated that the two avian control regions evolve mainly through base substitutions but are also characterized by the occurrence of a 57-bp deletion/addition event at their 5′ end. The overall sequence divergence between the two gallinaceous birds suggests that avian mitochondrial genomes evolve at a similar rate to other vertebrate mitochondrial DNAs.  相似文献   

5.
The red-necked phalarope is a wonderful species with specific morphological characters and lifestyles. Mitochondrial genomes, encoding necessary proteins involved in the system of energy metabolism, are important for the evolution and adaption of species. In this study, we determined the complete mitogenome sequence of Phalaropus lobatus (Charadriiformes: Scolopacidae). The circular genome is 16714 bp in size, containing 13 PCGs, two ribosomal RNAs and 22 tRNAs and a high AT-rich control region. The AT skew and GC skew of major strand is positive and negative respectively. Most of PCGs are biased towards A-rich except ND1. A codon usage analysis shows that 3 start codons (ATG, GTG and ATA), 4 stop codons (TAA, TAG, AGG, AGA) and two incomplete terminate codons (T–). Twenty two transfer RNAs have the typical cloverleaf structure, and a total of ten base pairs are mismatched throughout the nine tRNA genes. The phylogenetic tree based on 13 PCGs and 2 rRNA genes indicates that monophyly of the family and genus Phalaropus is close to genus Xenus plus Tringa. The analysis of selective pressure shows 13 protein-coding genes are evolving under the purifying selection and P. lobatus is different from other Scolopacidae species on the selective pressure of gene ND4. This study helps us know the inherent mechanism of mitochondrial structure and natural selection.  相似文献   

6.
The whole mitochondrial genome (14,915 nt) of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia, Thoracica) was sequenced and characterized. It is the shortest of the 31 completely sequenced crustacean mitochondrial genomes, with the exception of a copepod Tigriopus japonicus (14,628 nt). It consists of the usual 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 relatively short non-coding region (294 nt). The thoracican cirripeds apart from Megabalanus volcano have the same arrangement of protein-coding genes as Limulus polypemus, but there are frequent tRNA gene translocations (at least 8). Some interesting translocation features that may be specific to the thoracican cirriped lineage are as follows: 1) trnK-trnQ lies between the control region and trnI, 2) trnA-trnE lies between trnN and trnS1, 3) trnP lies between ND4L and trnT, and 4) trnY-trnC lies between trnS2 and ND1. In P. mitella there are two trnL genes (L1 and L2) in the typical crustacean positions (ND1-L1-LrRNA and CO1-L2-CO2). The present result is compared and discussed with the other three cirriped mitochondrial genomes from one pedunculate (Pollicipes polymerus) and two sessiles (Tetraclita japonica and M. volcano) published so far. Mitochondrial protein phylogenies reconstructed by the BI and ML algorithms show that the thoracican Cirripedia is monophyletic (BPP 100/BP 100) and associated with Remipedia (BPP 98/BP 35). In addition, Oligostraca, including Ostracoda, Branchiura, and Pentastomida, is a monophyletic group (BPP 99/BP 68), and is basal to all the other examined arthropods. Remipedia + Cirripedia appears as an independent lineage within Arthropoda, apart from Thoracopoda (Malacostraca, Branchiopda, and Cephalocarida). The Thoracopoda is paraphyletic to Hexapoda. The present result suggests that the monophylies of Crustacea and Maxillopoda should be reconsidered.  相似文献   

7.
Here we report the complete sequence of mitochondrial genomes for two sister taxa of freshwater teleosts, the recently derived Yarra pigmy perch Nannoperca obscura and the southern pigmy perch Nannoperca australis. These represent the first complete mitochondrial genomes for Percichthyidae (Perciformes), a family mostly distributed in Australia. The de novo genome assembly of 316,430 pyrosequencing reads from 454 libraries has produced the entire mitochondria for N. obscura and a nearly complete version for N. australis. The mtDNA genome from the latter was completed through the design of one primer set and standard Sanger sequencing for genome finishing, followed by the hybrid assembly of reads with MIRA software using N. obscura sequence as reference genome. The complete mitogenomes of N. obscura and N. australis are 16,496 and 16,494 bp in size, respectively. Both genomes contain 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a control region. Several characteristics of mitochondria typically found in teleost fishes were detected, such as: (i) most genes found in the heavy strand, with the exception of ND6 and eight tRNA genes; (ii) avoidance of G as the third base of codons; (iii) presence of gene overlapping; (iv) percentage of bases usage. We found only eight indels and 197 nucleotide substitutions between these Nannoperca mitogenomes, consistent with a previous hypothesis of recent speciation. The data reported here provide a resource for comparative analysis of recent evolution of mitochondrial genomes.  相似文献   

8.
The complete mitochondrial genome sequence of the silver croaker, Argyrosomus argentatus, was obtained by using LA-PCR and sequencing. The mitogenome is 16485 bp in length, consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a non-coding control region like those found in other vertebrates, with the gene order similar to that of typical teleosts. Most of the genes of A. argentatus were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro)) genes were encoded on the L-strand. The reading frames of two pairs of genes overlapped: ATPase8 and 6 and ND4L and ND4 by ten and seven nucleotides, respectively. The origin of L-strand replication in A. argentatus was in a cluster of five tRNA genes (WANCY) and was 46 nucleotides in length. The conserved motif (5'-GCGGG-3') was found at the base of the stem within the tRNA(Cys) gene. Within the control region, we identified all of the conserved motifs except for CSB-F.  相似文献   

9.
10.
The complete mitochondrial genome (mitogenome) sequence of the silver croaker, Argyrosomus argentatus, was obtained by using LA-PCR and sequencing. The mitogenome is 16485 bp in length, consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a non-coding control region like those found in other vertebrates, with the gene order similar to that of typical teleosts. Most of the genes of A. argentatus were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro) genes were encoded on the L-strand. The reading frames of two pairs of genes overlapped: ATPase8 and 6 and ND4L and ND4 by ten and seven nucleotides, respectively. The origin of L-strand replication in A. argentatus was in a cluster of five tRNA genes (WANCY) and was 46 nucleotides in length. The conserved motif (5′-GCGGG-3′) was found at the base of the stem within the tRNACys gene. Within the control region, we identified all of the conserved motifs except for CSB-F.  相似文献   

11.
T Moum  S Johansen 《Génome》1992,35(6):903-906
The nucleotide sequences of the mitochondrial ND6 and tRNA(Glu) genes and part of the displacement loop region in two closely related seabird species are presented. A chicken type gene organization in which the tRNA(Glu), ND6, and displacement loop are localized next to each other was found in these species and suggests that this is a conserved feature of avian mitochondrial DNA. The nucleotide and amino acid divergences of ND6 at different taxonomic levels are assessed, and its relevance to phylogenetic studies in birds is discussed.  相似文献   

12.
The entire mitochondrial genome was sequenced in a prostriate tick, Ixodes hexagonus, and a metastriate tick, Rhipicephalus sanguineus. Both genomes encode 22 tRNAs, 13 proteins, and two ribosomal RNAs. Prostriate ticks are basal members of Ixodidae and have the same gene order as Limulus polyphemus. In contrast, in R. sanguineus, a block of genes encoding NADH dehydrogenase subunit 1 (ND1), tRNA(Leu)(UUR), tRNA(Leu)(CUN), 16S rDNA, tRNA(Val), 12S rDNA, the control region, and the tRNA(Ile) and tRNA(Gln) have translocated to a position between the tRNA(Glu) and tRNA(Phe) genes. The tRNA(Cys) gene has translocated between the control region and the tRNA(Met) gene, and the tRNA(Leu)(CUN) gene has translocated between the tRNA(Ser)(UCN) gene and the control region. Furthermore, the control region is duplicated, and both copies undergo concerted evolution. Primers that flank these rearrangements confirm that this gene order is conserved in all metastriate ticks examined. Correspondence analysis of amino acid and codon use in the two ticks and in nine other arthropod mitochondrial genomes indicate a strong bias in R. sanguineus towards amino acids encoded by AT-rich codons.   相似文献   

13.
MOTIVATION: Mitochondrial genomes encode their own transfer RNAs (tRNAs). These are often degenerate in sequence and structure compared to tRNAs in their bacterial ancestors. This is one of the reasons why current tRNA gene predictor programs perform poorly identifying mitochondrial tRNA genes. As a consequence there is a need for a new program with the specific aim of predicting these tRNAs. RESULTS: In this study, we present the software ARWEN that identifies tRNA genes in metazoan mitochondrial nucleotide sequences. ARWEN detects close to 100% of previously annotated genes. AVAILABILITY: An online version, software for download and test results are available at www.acgt.se/online.html  相似文献   

14.
Evolution of the WANCY region in amniote mitochondrial DNA   总被引:7,自引:1,他引:6  
In most vertebrate mitochondrial genomes, the site for initiation of light-strand replication, OL, is found within a cluster of five transfer RNA (tRNA) genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), and tRNA(Tyr)). This region and part of the adjacent cytochrome c oxydase subunit I (COI) gene were sequenced for two crocodilian, two turtle, and one snake species and for Sphenodon punctatus; part of the adjacent nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2) gene was also sequenced for the crocodilian and turtle species. All had the typical vertebrate gene order. The turtles and the snake have a lengthy noncoding sequence between the tRNA(Asn) and tRNA(Cys) genes that we assumed to be homologous to the mammalian OL. The crocodilians and Sphenodon lack such a sequence, a condition they share with birds. Most proposed phylogenies for the amniotes require that OL at this position was lost at least twice during their diversification or was evolved independently more than once. Within the five tRNA genes, frequencies of substitutions are much higher in loops than in stems. Many loops vary dramatically in size among the species; in the most extreme case, the D-arm of the Sphenodon tRNA(Cys) is a "D-arm replacement" loop of seven nucleotides. Frequency of transitions in stems is relatively uniform across tRNAs, but frequency of transversions varies greatly. Mismatches in stems are infrequent, and their relative frequency in a specific tRNA is unrelated to the frequency of substitution in the corresponding gene. Several features of mammalian mitochondrial tRNAs are conserved in WANCY tRNAs throughout amniotes. The inferred initiation codon for COI is GTG in crocodilians, turtles, and the snake, a condition they share with fishes, certain amphibians, and birds. TTG appears to be the initiation codon for COI in Sphenodon; if correct, this would be a novel initiation codon for vertebrate mitochondrial DNA. Phylogenetic analyses of the inferred amino acid sequences of ND2 and COI support the sister-group relationship of birds and crocodilians and suggest that mammals are an early derived lineage within the amniotes.   相似文献   

15.
Mitochondrial genome diversity in parasites   总被引:12,自引:0,他引:12  
Mitochondrial genomes have been sequenced from a wide variety of organisms, including an increasing number of parasites. They maintain some characteristics in common across the spectrum of life-a common core of genes related to mitochondrial respiration being most prominent-but have also developed a great diversity of gene content, organisation, and expression machineries. The characteristics of mitochondrial genomes vary widely among the different groups of protozoan parasites, from the minute genomes of the apicomplexans to amoebae with 20 times as many genes. Kinetoplastid protozoa have a similar number of genes to metazoans, but the details of gene organisation and expression in kinetoplastids require extraordinary mechanisms. Mitochondrial genes in nematodes and trematodes appear quite sedate in comparison, but a closer look shows a strong tendency to unusual tRNA structure and alternative initiation codons among these groups. Mitochondrial genes are increasingly coming into play as aids to phylogenetic and epidemiologic analyses, and mitochondrial functions are being recognised as potential drug targets. In addition, examination of mitochondrial genomes is producing further insights into the diversity of the wide-ranging group of organisms comprising the general category of parasites.  相似文献   

16.
The cichlid fishes of the East African Great Lakes represent a model especially suited to study adaptive radiation and speciation. With several African cichlid genome projects being in progress, a promising set of closely related genomes is emerging, which is expected to serve as a valuable data base to solve questions on genotype-phenotype relations. The mitochondrial (mt) genomes presented here are the first results of the assembly and annotation process for two closely related but eco-morphologically highly distinct Lake Tanganyika cichlids, Petrochromis trewavasae and Tropheus moorii. The genomic sequences comprise 16,588 bp (P. trewavasae) and 16,590 bp (T. moorii), and exhibit the typical mitochondrial structure, with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding control region. Analyses confirmed that the two species are very closely related with an overall sequence similarity of 96%. We analyzed the newly generated sequences in the phylogenetic context of 21 published labroid fish mitochondrial genomes. Consistent with other vertebrates, the D-loop region was found to evolve faster than protein-coding genes, which in turn are followed by the rRNAs; the tRNAs vary greatly in the rate of sequence evolution, but on average evolve the slowest. Within the group of coding genes, ND6 evolves most rapidly. Codon usage is similar among examined cichlid tribes and labroid families; although a slight shift in usage patterns down the gene tree could be observed. Despite having a clearly different nucleotide composition, ND6 showed a similar codon usage. C-terminal ends of Cox1 exhibit variations, where the varying number of amino acids is related to the structure of the obtained phylogenetic tree. This variation may be of functional relevance for Cox1 synthesis.  相似文献   

17.
Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system.This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts.During acute thermal challenge (0-15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.  相似文献   

18.
The entire mitochondrial genome of Rana catesbeiana was cloned into a plasmid vector pBR322 at the unique BamHI site and the nucleotide sequences of the ND2 gene and of its flanking genes were determined. The ND2 gene was encoded by 1,033 base pairs and, as deduced from the nucleotide sequence, the ND2 product consisted of 344 amino acids with a molecular weight of 37,561. This gene was flanked on the 5' side by the tRNA genes for isoleucine, glutamine, and methionine and on the 3' side by those for tryptophan and alanine. These genes were the same in their organization as those found in the mammalian and Xenopus laevis mitochondrial genomes. A comparison of the putative amino acid sequences of the ND2 proteins of different animal species revealed that six regions in the sequence were well conserved during evolution, suggesting that some of these conserved sequences are crucial for biological activity of the ND2 protein. The nucleotide sequence homologies between the five tRNA genes of R. catesbeiana and their counterparts of mammals and X. laevis were in the range of 55 to 85%, depending on the tRNA and animal species.  相似文献   

19.
Summary We have cloned and sequenced over 9 kb of the mitochondrial genome from the sea starPisaster ochraceus. Within a continuous 8.0-kb fragment are located the genes for NADH dehydrogenase subunits 1, 2, 3, and 4L (ND1, ND2, ND3, and ND4L), cytochrome oxidase subunits I, II, and III (COI, COII, and COIII), and adenosine triphosphatase subunits 6 and 8 (ATPase 6 and ATPase 8). This large fragment also contains a cluster of 13 tRNA genes between ND1 and COI as well as the genes for isoleucine tRNA between ND1 and ND2, arginine tRNA between COI and ND4L, lysine tRNA between COII and ATPase 8, and the serine (UCN) tRNA between COIII and ND3. The genes for the other five tRNAs lie outside this fragment. The gene for phenylalanine tRNA is located between cytochrome b and the 12S ribosomal genes. The genes for tRNAglu and tRNAthr are 3 to the 12S ribosomal gene. The tRNAs for histidine and serine (AGN) are adjacent to each other and lie between ND4 and ND5. These data confirm the novel gene order in mitochondrial DNA (mtDNA) of sea stars and delineate additional distinctions between the sea star and other mtDNA molecules.  相似文献   

20.
To help determine whether the typical arthropod arrangement was a synapomorphy for the whole Tettigoniidae, we sequenced the mitochondrial genome (mitogenome) of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). The 16,166-bp nucleotide sequences of X. fascipes mitogenome contains the typical gene content, gene order, base composition, and codon usage found in arthropod mitogenomes. As a whole, the X. fascipes mitogenome contains a lower A+T content (70.2%) found in the complete orthopteran mitogenomes determined to date. All protein-coding genes started with a typical ATN codon. Ten of the 13 protein-coding genes have a complete termination codon, but the remaining three genes (COIII, ND5 and ND4) terminate with incomplete T. All tRNAs have the typical clover-leaf structure of mitogenome tRNA, except for tRNA(Ser(AGN)), in which lengthened anticodon stem (9 bp) with a bulged nuleotide in the middle, an unusual T-stem (6 bp in constrast to the normal 5 bp), a mini DHU arm (2 bp) and no connector nucleotides. In the A+T-rich region, two (TA)n conserved blocks that were previously described in Ensifera and two 150-bp tandem repeats plus a partial copy of the composed at 61 bp of the beginning were present. Phylogenetic analysis found: i) the monophyly of Conocephalinae was interrupted by Elimaea cheni from Phaneropterinae; and ii) Meconematinae was the most basal group among these five subfamilies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号