首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A nonrecombinant human melanoma cell line and recombinant chinese hamster ovary (CHO) cells were used as examples for long-termin vitro cultivation in protein-free media. The method used to monitor the consistency of protein release by these mammalian cells was two-dimensional electrophoresis with immobilized pH gradient. Secreted proteins from a melanoma cell line cultivated in a continuous fermentation system over a period of 22 months were monitored. Two-dimensional patterns of secreted proteins were compared and the stability of their composition was determined over a period of nearly 14 months, with significant pattern variation being observed after 14 months. The protein pattern from this extendedin vitro culture was compared to those of the very same melanoma cell line recultivated after being frozen in liquid nitrogen for more than 2 years. Due to the high resolution of complex polypeptide mixtures and the possibility to detect even minor differences in the composition of protein patterns, we propose the two-dimensional electrophoresis as a tool for quality assessment in animal cell culture technology.  相似文献   

2.
To investigate the effects of factors secreted by different cell lines on human monoclonal antibody (MAb) integrity, 600 mg of a human MAb, which specifically binds to human erythrocytes, were produced in a perfusion process. After purification by protein A affinity chromatography, the MAb was used for integrity testing in supernatants of several cell lines to investigate their potential to degrade the antibody in the extracellular environment. One insect cell line (IPLB-SF-21 AE) and four mammalian cell lines [CHO K1, BHK-21 (C13), C1271, P3-X63-Ag8.653], all of them commonly used for the production of recombinant proteins, and the human-human-mouse heterohybridoma cell line itself (H-CB-hahE), were adapted to serum-free culture media. For integrity testing all cell lines were cultivated in spinner flasks using serum-free media supplemented with 30 mug mL(-1) of purified MAb. MAb integrity was assayed by SDS polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing, both followed by Western blotting, and an antigen binding assay. None of the mammalian cells showed any detectable effects on antibody stability and integrity during exponential growth, whereas isoelectric focusing of monoclonal antibody taken from IPLB-SF-21 AE culture supernatants revealed a new band indicating a partial modification of the MAb by secreted factors of these cells. This observation did not correlate with the total proteolytic activity, which was measured in all supernatants and found to be lowest in the insest cell cultures. For mammalian cell cultures, it could be concluded from these findings that shifts of the antibody microheterogeneity pattern, which can be found normally as a result of variations in different production parameters, are not caused by extracellular factors once the product has been secreted into the supernatant. In addition to their well-known advantages in posttranslational modifications (e.g., formation of complex type N-glycans), mammalian cells appear to be more suitable as expression systems for human monoclonal antibodies to be used in vivo when compared with baculovirus-infected insect cells. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
为了对工程中国仓鼠卵巢(CHO)细胞所产人源重组促红素(rhEPO)的N-糖基化特点进行考察,静置培养工程细胞后,通过等电聚焦和凝集素共沉淀对培养上清中的rhEPO进行分析,并对无血清培养上清中乳酸脱氢酶(LDH)和唾液酸酶活性进行检测,发现这株CHO细胞可以表达唾液酸含量较高的rhEPO蛋白。但是随着培养时间的延长,细胞的存活率逐渐降低,死亡的细胞将胞内的唾液酸酶释放到胞外,唾液酸酶的降解作用会造成N-糖链分枝末端的唾液酸占有率降低,导致rhEPO蛋白糖基化形态的变化。所使用的方法及得到的结果为进一步对工业过程进行分析提供了参考。  相似文献   

4.
It is not well understood how changes from suspension to microcarrier cultures affect cell growth, metabolism, and yield of recombinant proteins. To investigate the effects of culture conditions on cell characteristics, fed-batch bioreactor cultures were performed under different culture conditions (suspension cultures, cultures attached to Cytodex 3 and Cytopore 1 microcarriers) using two different Chinese hamster ovary cell lines producing either secreted human placental alkaline phosphatase (TR2-255) or tissue plasminogen activator (CHO 1-15-500). In controlled, agitated bioreactors, suspension cultures reached cell densities and product titers higher than those in microcarrier cultures, in contrast to the results in static flask cultures. Growth and metabolic activities showed similar trends in suspension and microcarrier culture regardless of cell line. However, the responses of the specific productivities to the different culture conditions differed significantly between the cell lines.  相似文献   

5.
Chinese hamster ovary cells producing recombinant human interferon-gamma were cultivated for 500 h attached to macroporous microcarriers in a perfused, fluidized-bed bioreactor, reaching a maximum cell density in excess of 3 x 10(7) cells (mL microcarrier)-1 at a specific growth rate (mu) of 0.010 h-1. During establishment of the culture, the N-glycosylation of secreted recombinant IFN-gamma was monitored by capillary electrophoresis of intact IFN-gamma proteins and by HPLC analysis of released N-glycans. Rapid analysis of IFN-gamma by micellar electrokinetic capillary chromatography resolved the three glycosylation site occupancy variants of recombinant IFN-gamma (two Asn sites occupied, one Asn site occupied and nonglycosylated) in under 10 min per sample; the relative proportions of these variants remained constant during culture. Analysis of IFN-gamma by capillary isoelectric focusing resolved at least 11 differently sialylated glycoforms over a pI range of 3.4 to 6.4, enabling rapid quantitation of this important source of microheterogeneity. During perfusion culture the relative proportion of acidic IFN-gamma proteins increased after 210 h of culture, indicative of an increase in N-glycan sialylation. This was confirmed by cation-exchange HPLC analysis of released, fluorophore-labeled N-glycans, which showed an increase in the proportion of tri- and tetrasialylated N-glycans associated with IFN-gamma during culture, with a concomitant decrease in the proportion of monosialylated and neutral N-glycans. Comparative analyses of IFN-gamma produced by CHO cells in stirred-tank culture showed that N-glycan sialylation was stable until late in culture, when a decline in sialylation coincided with the onset of cell death and lysis. This study demonstrates that different modes of capillary electrophoresis can be employed to rapidly and quantitatively monitor the main sources of glycoprotein variation, and that the culture system and operation may influence the glycosylation of a recombinant glycoprotein.  相似文献   

6.
The effect of different short-term controlled cell culture conditions on the product quality of a genetically engineered human interleukin-2 N-glycosylation variant protein expressed from a baby hamster kidney cell line (BHK-21) has been investigated. A perfused 2-L stirred tank reactor was used. Products purified from the culture supernatant of cells grown under experimentally initiated nutrient limitations (glucose, amino acids, pO(2)) were characterized by their HPLC-elution profile, SDS-PAGE and western blotting, amino acid sequencing as well as for their N-linked carbohydrates, using "HPAEC-PAD fingerprinting" and methylation analysis. The glycoprotein products secreted from cells under the different culture conditions (kept for 24 h, after an adaption time period of 48 h) showed an almost identical oligosaccharide pattern. By contrast, short-term changes of the culture condition led to considerable differences in the ratio of glycosylated to unglycosylated protein forms. Significant amounts of NH(2)-terminally truncated polypeptide forms were observed. They lacked proponderantly the first two amino acids; however, under certain culture conditions forms lacking up to eight NH(2)-terminal amino acids were detected. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
8.
Summary Biosafety requirements increasingly restrict the cultivation of mammalian cells producing therapeutic glycoproteins to conditions that are devoid of any compound of animal origin. On cultivation in serum-free media, the proteases inhibitors, usually found in serum, cannot protect secreted recombinant proteins against unwanted endogenous proteolysis. Chinese hamster ovary (CHO) cells, secreting recombinant human interferon-γ (CHO-320 cell line) and cultivated in suspension in an original protein-free medium, expressed at least two members of the matrix metalloproteinases (MMP), either at the cell surface (proMMP-14 and MMP-14) or secreted (proMMP-9). In addition, tissue- and urinary-type plasminogen activators were also secreted in such culture conditions. At the cell surface, dipeptidyl peptidase IV and tripeptidyl peptidase II (TPPII) activities were also detected, and their activities decreased during time course of batch cultures. The proteolytic activities of these proteins were counterbalanced by (1) their expression as zymogens (proMMP-9, proMMP-14), (2) the expression of their natural inhibitors, tissue inhibitors of metalloproteinases-1 and-2 and plasminogen activator inhibitor-1 (PAI-1), or (3) the addition of plant protein hydrolysates to the culture medium, acting as a nonspecific source of TPPII inhibitors. This study points out that, even in protein-free media, recombinant proteins secreted by CHO cells are actively protected against physiological and unwanted extracellular proteolysis either by endogenous or by exogenous inhibitors.  相似文献   

9.
Purification of recombinant human growth hormone (rhGH) from Chinese hamster ovary (CHO) cell culture supernatant by Gradiflow large-scale electrophoresis is described. Production of rhGH in CHO cells is an alternative to production in Escherichia coli, with the advantage that rhGH is secreted into protein-free production media, facilitating a more simple purification and avoiding resolubilization of inclusion bodies and protein refolding. As an alternative to conventional chromatography, rhGH was purified in a one-step procedure using Gradiflow technology. Clarified culture supernatant containing rhGH was passed through a Gradiflow BF200 and separations were performed over 60 min using three different buffers of varying pH. Using a 50 mM Tris/Hepes buffer at pH 7.5 together with a 50 kDa separation membrane, rhGH was purified to approximately 98% purity with a yield of 90%. This study demonstrates the ability of Gradiflow preparative electrophoresis technology to purify rhGH from mammalian cell culture supernatant in a one-step process with high purity and yield. As the Gradiflow is directly scalable, this study also illustrates the potential for the inclusion of the Gradiflow into bioprocesses for the production of clinical grade rhGH and other therapeutic proteins.  相似文献   

10.
The applicability of a protein-free medium for the production of recombinant human interleukin-2 with baby hamster kidney cells in airlift bioreactors was investigated. For this purpose, a BHK-21 cell line, adapted to grow and produce in protein-free SMIF7 medium without forming spheroids in membrane-aerated bubble-free bioreactors, was used as the producer cell line. First, cultivation of the cells was established at a 20-L scale using an internal loop airlift bioreactor system. During the culturing process the medium formulation was optimized according to the specific requirements associated with cultivation of mammalian cells under protein-free conditions in a bubble-aerated system. The effects of the addition of an antifoam agent on growth, viability, productivity, metabolic rates, and release of lactate dehydrogenase were investigated. Although it was possible to establish cultivation and production at a 20-L scale without the use of antifoaming substances, the addition of 0.002% silicon-oil-based antifoaming reagent improved the cultivation system by completely preventing foam formation. This reduced the release of lactate dehydrogenase activity to the level found in bubble-free aerated stirred tank membrane bioreactors and led to a reduction in generation doubling times by about 5 h (17%). Using the optimized medium formulation, cells were cultivated at a 1000-L scale, resulting in a culture performance comparable to the 20-L airlift bioreactor. For comparison, cultivations with protein-containing SMIF7 medium were carried out at 20- and 1000-L scales. The application of protein supplements did not lead to a significant improvement in the cultivation conditions. The results were also compared with experiments performed in a bubble-free aerated stirred tank membrane bioreactor to evaluate the influence of bubbles on the investigated culture parameters. The data implied a higher metabolic activity of the cells in airlift bioreactors with a 150% higher glucose consumption rate. The results of this study clearly demonstrate the applicability of a protein-free chemically defined medium for the production of recombinant proteins with BHK cells in airlift bioreactors.  相似文献   

11.
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred‐tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH‐controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process‐dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension‐adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174–1180, 2016  相似文献   

12.
Effect of bench-scale culture conditions on murine IgG heterogeneity   总被引:2,自引:0,他引:2  
A stable murine hybridoma cell line, secreting IgG1 antibodies (7H3) against the soluble type I receptor for Tumor Necrosis Factor (sTNF-R1), was cultivated in two different bioreactor systems, a hollow fiber and a stirred tank fermentor, in order to evaluate the effect of culture conditions on antibody structural and functional heterogeneity. Conventional serum-supplemented and serum-free media were chosen for fermentation in stirred tank bioreactor, whereas only serum-supplemented media were used for hollow fiber cultivation. Extent of glycosylation, determined by lectin binding assays, and charge heterogeneity of murine monoclonal antibodies displayed relevant variations according to the fermentation system used. After complete sugars removal by N-glycosidase F treatment, charge heterogeneity were still observed suggesting the occurrence of additional modifications at the protein level. In vitro culture in serum-supplemented media carried out with the hollow fibre system led to higher productivity but greater antibody charge heterogeneity and differences in lectin-binding profile than cultivation in the stirred tank bioreactor.Results cumulatively indicated that hybridoma cultivation methods, but also cultivation time, influence antibody heterogeneity, both in the protein and sugar moieties. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 17-25, 1997.  相似文献   

13.
This study demonstrates the applicability of pressurized stirred tank bioreactors for oxygen transfer enhancement in aerobic cultivation processes. The specific power input and the reactor pressure was employed as process variable. As model organism Escherichia coli, Arxula adeninivorans, Saccharomyces cerevisiae and Corynebacterium glutamicum were cultivated to high cell densities. By applying specific power inputs of approx. 48kWm(-3) the oxygen transfer rate of a E. coli culture in the non-pressurized stirred tank bioreactor was lifted up to values of 0.51moll(-1)h(-1). When a reactor pressure up to 10bar was applied, the oxygen transfer rate of a pressurized stirred tank bioreactor was lifted up to values of 0.89moll(-1)h(-1). The non-pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities of more than 40gl(-1) cell dry weight (CDW) of E. coli, whereas the pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities up to 225gl(-1) CDW of A. adeninivorans, 89gl(-1) CDW of S. cerevisiae, 226gl(-1) CDW of C. glutamicum and 110gl(-1) CDW of E. coli. Compared to literature data, some of these cell densities are the highest values ever achieved in high cell density cultivation of microorganisms in stirred tank bioreactors. By comparing the specific power inputs as well as the k(L)a values of both systems, it is demonstrated that only the pressure is a scaleable tool for oxygen transfer enhancement in industrial stirred tank bioreactors. Furthermore, it was shown that increased carbon dioxide partial pressures did not remarkably inhibit the growth of the investigated model organisms.  相似文献   

14.
15.
The asparagine-linked sugar chains of human erythropoietin produced by recombinant Chinese hamster ovary cells and naturally occurring human urinary erythropoietin were liberated by hydrazinolysis and fractionated by paper electrophoresis, lectin affinity chromatography, and Bio-Gel P-4 column chromatography. Both erythropoietins had three asparagine-linked sugar chains in one molecule, all of which were acidic complex type. Structural analysis of them revealed that the sugar chains from both erythropoietins are quite similar except for sialyl linkage. All sugar chains of erythropoietin produced by recombinant Chinese hamster ovary cells contain only the NeuAc alpha 2----3Gal linkage, while those of human urinary erythropoietin contain the NeuAc alpha 2----6Gal linkage together with the NeuAc alpha 2----3Gal linkage. The major sugar chains were of fucosylated tetraantennary complex type with and without N-acetyllactosamine repeating units in their outer chain moieties in common, and small amounts of 2,4- and 2,6-branched triantennary and biantennary sugar chains were detected. This paper proved, for the first time, that recombinant technique can produce glycoprotein hormone whose carbohydrate structures are common to the major sugar chains of the native one.  相似文献   

16.
The feasibility of large-scale production of recombinant human chitinase using a constitutive Pichia pastoris expression system was demonstrated in a 21-L continuous stirred tank reactor. A steady-state recombinant protein concentration of 250 mg/L in the supernatant was sustained for 1 month at a dilution rate of 0.042 h(-1) (equivalent to one volume exchange per day), enabling a volumetric productivity of 144 mg/L d (240 U/L d). The steady-state dry cell weight concentration in this high cell density culture reached 110 g/L. Considering safety and economical aspects, all large-scale cultivations were conducted without molecular oxygen supplementation. Conventional air sparging was used instead. The oxygen demand of the process was determined by off-gas analysis (OUR = 4.8 g O(2) L(-1) h(-1) with k(L)a = 846 h(-1)) and evaluated with regard to further reactor scale-up.  相似文献   

17.
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high-level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.  相似文献   

18.
Summary To satisfy the demand for simple production technology (simple and cheap reactor, cheap recovery and finishing), solid state cultivations were carried out with pretreated straw in a simple fixed bed reactor under nonsterile conditions.The results of these investigations were compared with those evaluated in a stirred tank reactor. The same cell mass fractions were obtained in both reactors. However, about double the cultivation time is necessary for a solid state cultivation as compared to a submerse cultivation.Symbols N2 nitrogen content of dry biomass (%) - P productivity on cell protein (%/h) - T temperature (°C) - tF cultivation time (h) - X fungal cell mass fraction (%)  相似文献   

19.
Productivity and sialylation are two important factors for the production of recombinant glycoproteins in mammalian cell culture. In our previous study, we found that silkworm hemolymph increased the sialylation of recombinant secreted human placental alkaline phosphatase in the insect cells, promoted the transfer of sialic acids onto the glycoprotein oligosaccharides in an in vitro asialofetuin sialylation system, and enhanced recombinant protein production in the Chinese hamster ovary (CHO) cells. These beneficial effects were mainly due to the 30K proteins, which consist of five isoforms. Among the 30K proteins, 30Kc19 was determined to be the major component. In this study, the 30Kc19 gene was introduced into a CHO cell line producing recombinant human erythropoietin, and its effects on productivity and sialylation were investigated. The transient expression of 30Kc19 significantly improved the production and sialylation of EPO. A stable cell line containing 30Kc19 was also established to investigate the effect of 30Kc19 gene expression. The stable expression of 30Kc19 increased the production and sialylation by 102.6% and 87.1%, respectively. The enhanced productivity from 30Kc19 expression is believed to occur because the 30Kc19 protein suppresses the loss of mitochondrial membrane potential and consequently improves the generation of intracellular ATP. In addition, the positive effect of 30Kc19 expression on sialylation is believed to be due to its ability to maintain sialyltransferase activity. In conclusion, 30Kc19 expression is a novel approach to improve the production and sialylation of recombinant glycoproteins in CHO cells.  相似文献   

20.
The short isoform of platelet-derived growth factor A (PDGF-A) was expressed in a mammalian host (BHK-21 cell). A cell line was obtained that secreted up to 0.3 micrograms/10(6) cells recombinant PDGF-A chain homodimer/day into the medium. For large-scale production of supernatant, cells were grown either in roller bottles or in 2.5-1 stirred tank fermenters. A simple two-step procedure was developed to purify recombinant PDGF-AA (rPDGF-AA). The first step was adsorption onto porous glass and the final step was reversed-phase high-performance liquid chromatography. The yield was 0.2 mg/l supernatant. A total amount of 20-30 mg pure rPDGF-AA may be obtained from a single fermenter run. Sequence analysis showed the correct amino terminus and no internal proteolytic cleavages. The specific activity was 5 ng/ml for mouse AKR-2B cells. [125I]rPDGF-AA had an affinity constant of approximately 0.5 nM to these cells and 25,000 binding sites were estimated/cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号