首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron K-edge extended-X-ray-absorption-fine-structure (e.x.a.f.s.) spectra were recorded for diferric human and rabbit serum transferrins and for diferric chicken ovotransferrin in aqueous solution; for ovotransferrin e.x.a.f.s. spectra from the N-terminal and C-terminal domain fragments were also measured. The overall spectral profiles closely resemble one another, indicating similar iron-binding sites. The simulation of the diferric ovotransferrin spectrum suggests a first co-ordination shell consisting of six low-Z ligands (nitrogen/oxygen), two ligands at a distance of approx. 0.185 nm (1.85 A) and four ligands at approx. 0.204 nm (2.04 A). The two shorter distances may correspond to Fe-O (tyrosine), whereas the longer distance is consistent with Fe-N (histidine) and Fe-O (water). Detailed analysis of the spectra of the N-terminal and C-terminal fragments indicates a difference in the short ligand distance.  相似文献   

2.
The zinc co-ordination in 5-aminolaevulinate dehydratase (5-aminolaevulinate hydro-lyase, EC 4.2.1.24) was investigated by recording and interpreting the extended X-ray-absorption fine structure (e.x.a.f.s.) associated with the zinc K-edge. The enzyme has a molecular mass of 280 000 Da and consists of eight subunits of 35 000 Da each; the samples studied contained approx. 1 g-atom of zinc/mol of subunit. Four forms of the enzyme were investigated and details of the zinc environment were elucidated, as follows. In the native enzyme, zinc is considered to be co-ordinated to three sulphur atoms at 0.228(2)nm [2.28(2)A] and a lower-Z atom at 0.192(5)nm [1.92(5)A] (if nitrogen) or 0.189(5)nm [1.89(5)A] (if oxygen). Reaction of the enzyme with the inhibitor 2-bromo-3-(imidazol-5-yl)propionic acid produced significant changes in the e.x.a.f.s., the nature of which are consistent with co-ordination by about three sulphur atoms at 0.222(2)nm [2.22(2)A], a nitrogen atom at 0.193(5)nm [1.93(5)A] and a nitrogen atom from the inhibitor at 0.214(5)nm [2.14(5)A]. Inactivation of the enzyme by air-oxidation of essential thiol groups and binding of the substrate produce slight changes in the e.x.a.f.s. consistent with slight re-arrangement of ligands with additional lighter ligands (nitrogen or oxygen). These results, when combined with previous findings, are taken to indicate that zinc has a structural rather than a direct catalytic role in 5-aminolaevulinate dehydratase.  相似文献   

3.
Copper K-edge e.x.a.f.s (extended X-ray-absorption fine structure) was measured for dopamine beta-mono-oxygenase in aqueous solution. Comparison with the Cu K-edge e.x.a.f.s. of bovine erythrocyte superoxide dismutase shows a close resemblance. Detailed analysis of the e.x.a.f.s. indicates that the copper atom is bound to four imidazole groups at 0.201 nm with one or two oxygen atoms at 0.23 nm.  相似文献   

4.
X-ray absorption spectra have been recorded for the molybdenum K-edge region of xanthine oxidase. Both the absorption edge and the extended fine structure (e.x.a.f.s.) regions were investigated. Spectra were obtained for samples of the desulpho enzyme as well as for mixtures of this with the active enzyme. The spectrum of the pure active form was then obtained by difference. The desulpho enzyme shows a pronounced step in the absorption edge, of a type previously associated terminal oxygen ligands. In the active enzyme this step has decreased markedly. Satisfactory simulations of the e.x.a.f.s. spectrum of the desulpho enzyme could be obtained by assuming the molybdenum to be bonded to two terminal oxygen atoms (Mo = O about .175 nm), two sulphur atoms (presumably from cysteine residues, Mo-S about .0250 nm) and one sulphur atom (presumably from a methionine residue, Mo-S about 0.290 nm). E.x.a.f.s. of the active enzyme differed appreciably from this. In keeping with earlier proposals [Gutteridge, Tanner & Bray (1978) Biochem. J. 175, 887-897], the spectrum of the active enzyme could be simulated if a sulphur atom at about 0.225 nm (i.e. presumably a terminal sulphur atom) replaced one of the terminal oxygen atoms of the desulpho from, with small changes in the other bond distances. Validity of the interpretative procedures, which involved phase shift and amplitude calculations ab initio, was demonstrated by using low molecular weight compounds of known structure.  相似文献   

5.
Copper and zinc K-edge e.x.a.f.s. (extended X-ray-absorption fine structures) were measured for the metal sites of oxidized and reduced bovine superoxide dismutase in aqueous solution. Detailed analysis of the spectra indicates that the copper site of the enzyme changes on reduction and is most probably co-ordinated to three imidazole groups at a shorter distance Cu-N(alpha) = 0.194 nm (1.94 A) in the reduced form compared with a co-ordination of four imidazole groups at 0.199 nm (1.99 A) and an oxygen atom from solvent water at 0.224 nm (2.24 A) in the oxidized form. Examination of the edge, near-edge structure and e.x.a.f.s. of the zinc sites indicates that the stereochemical changes at copper that accompany reduction introduce minimal perturbation on the stereochemistry at zinc.  相似文献   

6.
Zn-metallothionein 1 from rabbit liver was investigated by means of Zn K-edge extended X-ray-absorption fine structure (e.x.a.f.s.). Also, the Cu and Zn K-edge e.x.a.f.s. were measured for two samples of mixed Cu Zn-metallothionein 2, with Cu/Zn ratios of 5:2 and 6:3, from pig liver. Detailed simulation of the Cu sites shows a primary co-ordination with three sulphur atoms, presumably from cysteine residues at 0.225 nm +/- 0.001 nm (2.25 +/- 0.01 A). The data for the Zn sites are best reproduced by four Zn-S separations at 0.233 +/- 0.001 nm (2.33 +/- 0.01 A). The Zn K-edge e.x.a.f.s. recorded for rabbit metallothionein 1 at 77 K shows, in addition to the primary co-ordination shell, evidence for two Zn-Zn separations at approx. 0.50 nm (5.0 A). This latter result provides the first information concerning the internal arrangement of zinc atoms in Zn7-metallothionein.  相似文献   

7.
1. When ovotransferrin is partially saturated with iron, endotherms for apo-ovotransferrin, two monoferric ovotransferrins and Fe2-ovotransferrin are observed by differential scanning calorimetry. The relative sizes of the endotherms are changed in the presence of the iron-chelating agents nitrilotriacetic acid and ATP. 2. When iron is added as Fe(III)-nitrilotriacetate, at Fe-nitrilotriacetate: ovotransferrin ratios less than unity, the endotherm for Fe2-ovotransferrin is essentially absent. At Fe-nitrilotriacetate: ovotransferrin ratios of unity the only species present in solution in appreciable concentration as evidenced by their differential-scanning-calorimetry endotherms, are two monoferric ovotransferrins in approximately equal amounts. At Fe-nitrilotriacetate: ovotransferrin ratios greater than unity, the apo-ovotransferrin endotherm is absent, and the endotherms for the two monoferric ovotransferrins decrease in size as the endotherm for Fe2-ovotransferrin increases. 3. In the presence of nitrilotriacetate, binding of iron to the two sites of ovotransferrin is highly anti-co-operative, but essentially indiscriminate. When monoferric ovotransferrin is formed from apo-ovotransferrin, binding at one site is slightly favoured compared with binding at the other site, but once iron has been bound at either site, the binding affinity for iron at the unoccupied site is much decreased.  相似文献   

8.
Iron release from ovotransferrin in acidic media (3 < pH < 6) occurs in at least six kinetic steps. The first is a very fast (相似文献   

9.
Vanadium K-edge X-ray-absorption spectra were collected for samples of thionine-oxidized, super-reduced (during enzyme turnover) and dithionite-reduced VFe-protein of the vanadium nitrogenase of Azotobacter chroococcum (Acl*). Both the e.x.a.f.s and the x.a.n.e.s. (X-ray-absorption near-edge structure) are consistent with the vanadium being present as part of a VFeS cluster; the environment of the vanadium is not changed significantly in different oxidation states of the protein. The vanadium atom is bound to three oxygen (or nitrogen), three sulphur and three iron atoms at 0.215(3), 0.231(3) and 0.275(3) nm respectively.  相似文献   

10.
The kinetics of pyrophosphate-induced iron release from diferric ovotransferrin were studied spectrophotometrically at 37 degrees C in 0.1 M HEPES, pH 7.0. At high pyrophosphate concentrations, the kinetics are biphasic, indicating that the rates of iron release from the two, presumably noninteracting iron-binding sites of ovotransferrin are different. The pseudo-first-order rate constants for iron release from both the fast and slow sites exhibit a hyperbolic dependence on pyrophosphate concentrations. The data suggest that pyrophosphate forms complexes with the two iron-binding sites of ovotransferrin prior to iron removal. The stability constants of the complex formed with the fast site (Keqf) and slow site (Keqs) are 8.3 M-1 and 40.4 M-1, respectively. The first-order rate constants for the dissociation of ferric-pyrophosphate from the fast site (k2f) and the slow site (k2s) are 0.062 and 0.0044 min-1, respectively. Results from urea gel electrophoresis studies suggest that iron is released at a much faster rate from the N-terminal binding site of ovotransferrin. At high pyrophosphate concentration, only C-monoferric-ovotransferrin is detected during the course of iron release. At low pyrophosphate concentration, however, a detectable amount of N-monoferric-ovotransferrin is accumulated. This result is consistent with the kinetic finding that the site with a higher k2 (0.062 min-1) has a lower affinity toward pyrophosphate (Keq = 8.3 M-1) whereas the site with a lower k2 (0.0044 min-1) has a higher affinity for pyrophosphate (Keq = 40.4 M-1).  相似文献   

11.
The iron-binding properties of hen ovotransferrin.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The distribution of iron between the two iron-binding sites in partially saturated ovotransferrin was studied by labelling with 55Fe and 59Fe and by gel electrophoresis in a urea-containing buffer. 2. When iron is added in the form of chelate complexes at alkaline pH, binding occurs preferentially at the N-terminal binding site. In acid, binding occurs preferentially at the C-terminal site. 3. When simple iron donors (ferric and ferrous salts) are used the metal is distributed at random between the binding sites, as judged by the gel-electrophoresis method. The double-isotope method shows a preference of ferrous salts for the N-terminal site. 4. Quantitative treatment of the results of double-isotope labelling suggests that in the binding of iron to ovotransferrin at alkaline pH co-operative interactions between the sites occur. These interactions are apparently absent in the displacement of copper and in the binding of iron at acid pH.  相似文献   

12.
X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 2-3 eV to higher energy occurs upon oxidation of the Fe(II) enzyme to the Fe(III) species, corresponding to the valence change. The extended X-ray absorption fine structure shows clear differences in active-site structure as a result of this conversion. Curve-fitting on the new data of the Fe(II) enzyme, using the EXCURV88 program, leads to a coordination sphere that is in agreement with the active-site structure proposed earlier (6 +/- 1 N/O ligands at 0.205-0.209 nm with a maximum variance of 0.009 nm, including 4 +/- 1 imidazole ligands) [Navaratnam, S., Feiters, M. C., Al-Hakim, M., Allen, J. C., Veldink, G. A. and Vliegenthart, J. F. G. (1988) Biochim. Biophys. Acta 956, 70-76], while for the Fe(III) enzyme a shortening in ligand distances occurs (6 +/- 1 N/O ligands at 0.200-0.203 nm with maximum variance of 0.008 nm) and one imidazole is replaced by an oxygen ligand of unknown origin. Lyophilization does not lead to any apparent differences in the iron coordination of either species and gives a much better signal/noise ratio, allowing analysis of a larger range of data.  相似文献   

13.
1. The role of specific interaction between transferrin and its receptors in iron uptake by the liver in vivo was investigated using 59Fe-125I-labelled transferrins from several animal species, and adult and 15-day rats. Transferrin-free hepatic uptake of 59Fe was measured 2 or 0.5 hr after intravenous injection of the transferrins. 2. Rat, rabbit and human transferrins gave high and approximately equal levels of hepatic iron uptake while transferrins from a marsupial (Sentonix brachyurus), lizard, crocodile, toad and fish gave very low uptake values. Chicken ovotransferrin resulted in higher uptake than with any other species of transferrin. 3. Iron uptake by the femurs (as a sample of bone marrow erythroid tissue) and, in another group of 19-day pregnant animals by the placentas and fetuses, was also measured, for comparison with the liver results. The pattern of uptake from the different transferrins was found to be similar to that of iron uptake by the liver except that with femurs, placentas and fetuses ovotransferrin gave low values comparable to those of the other non-mammalian species. 4. It is concluded that iron uptake by the liver from plasma transferrin in vivo is largely or completely dependent on specific transferrin-receptor interaction. The high hepatic uptake of iron from ovotransferrin was probably mediated by the asialoglycoprotein receptors on hepatocytes.  相似文献   

14.
Transferrins bind Fe3+ very tightly in a closed interdomain cleft by the coordination of four protein ligands (Asp60, Tyr92, Tyr191, and His250 in ovotransferrin N-lobe) and of a synergistic anion, physiologically bidentate CO32-. Upon Fe3+ uptake, transferrins undergo a large scale conformational transition: the apo structure with an opening of the interdomain cleft is transformed into the closed holo structure, implying initial Fe3+ binding in the open form. To solve the Fe3+-loaded, domain-opened structure, an ovotransferrin N-lobe crystal that had been grown as the apo form was soaked with Fe3+-nitrilotriacetate, and its structure was solved at 2.1 A resolution. The Fe3+-soaked form showed almost exactly the same overall open structure as the iron-free apo form. The electron density map unequivocally proved the presence of an iron atom with the coordination by the two protein ligands of Tyr92-OH and Tyr191-OH. Other Fe3+ coordination sites are occupied by a nitrilotriacetate anion, which is stabilized through the hydrogen bonds with the peptide NH groups of Ser122, Ala123, and Gly124 and a side chain group of Thr117. There is, however, no clear interaction between the nitrilotriacetate anion and the synergistic anion binding site, Arg121.  相似文献   

15.
The mechanisms of S-nitrosothiol transformation into paramagnetic dinitrosyl iron complexes (DNICs) with thiol- or non-thiol ligands or mononitrosyl iron complex (MNICs) with N-methyl-D-glucamine dithiocarbamate catalyzed by iron(II) ions under anaerobic conditions were studied by monitoring EPR or optical features of the complexes and S-nitrosothiols. The kinetic investigations demonstrated the appearance of short-living paramagnetic mononitrosyl-iron complex with L-cysteine prior to the formation of stable dinitrosyl-iron complex with cysteine in the solution of iron(II)-citrate complex (50-100 microM), S-nitrosocysteine (400 microM), and L-cysteine (20 mM) in 100 mM Hepes buffer (pH 7.4). The addition of deoxyhemoglobin (100 microM) did not influence the process, which points to a direct interaction between S-nitrosocysteine and iron(II) ions to yield DNIC. The reaction of DNIC-cysteine formation is first- and second-order in iron and S-nitrosocysteine, respectively. The third-order rate constant is (1.0 +/- 0.2) x 10(5) M(-2) s(-1) (estimated from EPR results) or (2.0 +/- 0.1) x 10(4) M(-2) s(-1) (estimated by optical method). A similar process of DNIC-cysteine formation was observed in a solution of iron(II)-citrate complex, L-cysteine, and NO-proline (200 microM) as a NO* donor. The appearance of a less stable dinitrosyl-iron complex with phosphate was detected when solutions of iron(II)-citrate containing 100 mM phosphate buffer (pH 7.4) were mixed with S-nitrosocysteine or NO-proline. The rapid formation of DNIC with phosphate was followed by its decay. When the concentration of L-cysteine in solutions was reduced from 20 to 1 mM, the life-time of the DNIC-cysteine diminished notably; this was caused by consumption of L-cysteine in the process of DNIC-cysteine formation from S-nitrosocysteine and iron. Thus, L-cysteine is consumed. Formation of DNIC with glutathione was also observed in a solution of glutathione (20 mM), S-nitrosoglutathione (400 microM), and iron(II) complex (800 microM) in 100 mM Hepes buffer (pH 7.4), but the rate of formation was about 10 times slower than the formation of the DNIC-cysteine. The rate of MNIC-MGD formation from iron(II)-MGD complexes and S-nitrosocysteine was first-order in both reactants. The second-order rate constant for this reaction, estimated from EPR measurements, was 30 +/- 5 M(-1) s(-1). Rate constants of MNIC-MGD formation from iron(II)-MGD and the more stable S-nitrosoglutathione and S-nitroso-D,L-penicillamine were equal to 3.0 +/- 0.3 and 0.3 +/- 0.05 M(-1) s(-1), respectively. Thus, the concerted mechanism of DNIC and MNIC formation from S-nitrosothiols and iron(II) ions can be suggested to be predominant.  相似文献   

16.
Previous e.p.r. work [George, Bray, Morpeth & Boxer (1985) Biochem. J. 227, 925-931] has provided evidence for a pH- and anion-dependent transition in the structure of the Mo(V) centre of Escherichia coli nitrate reductase, with the low-pH form bearing both an anion and probably a hydroxy-group ligand. Initial e.x.a.f.s. measurements [Cramer, Solomonson, Adams & Mortenson (1984) J. Am. Chem. Soc. 106, 1467-1471] demonstrated the presence of sulphur (or chloride) ligands in the Mo(IV) and Mo(VI) oxidation states, as well as a variable number of terminal oxo (Mo = O) groups. To synthesize the e.p.r. and e.x.a.f.s. results better, we have conducted new e.p.r. experiments and complementary e.x.a.f.s. measurements under redox and buffer conditions designed to give homogeneous molybdenum species. In contrast with results on other molybdoenzymes, attempts to substitute the enzyme with 17O by dissolving in isotopically enriched water revealed only very weak hyperfine coupling to 17O. The significance of this finding is discussed. Experiments with different buffers indicated that buffer ions (e.g. Hepes) could replace the Cl- ligand in the low-pH Mo(V) enzyme form, with only a small change in e.p.r. parameters. E.x.a.f.s. studies of the oxidized and the fully reduced enzyme were consistent with the e.p.r. work in indicating a pH- and anion-dependent change in structure. However, in certain cases non-stoichiometric numbers of Mo = O interactions were determined, complicating the interpretation of the e.x.a.f.s. Uniquely for a molybdenum cofactor enzyme, a substantial proportion of the molecules in a number of enzyme samples appeared to contain no oxo groups. No evidence was found in our samples for the distant 'heavy' ligand atom reported in the previous e.x.a.f.s. study. The nature of the high-pH-low-pH transition is briefly discussed.  相似文献   

17.
(-)-Epigallocatechin-gallate ((-)-EGCg) and (-)-epicatechin-gallate ((-)-ECG) are important antioxidants which are found in green tea. The kinetics and mechanisms of the reactions of a pseudo-first order excess of iron(III) with EGCg and ECG have been investigated in aqueous solution at 25 degrees C and an ionic strength of 0.5M NaClO(4). Mechanisms have been proposed which account satisfactorily for the kinetic data. These are consistent with a mechanism in which the 2:1 metal:ligand complex initially formed on reaction of iron(III) with the ligand subsequently decomposes in an electron transfer step. Complex formation takes place at two separate binding sites via coupled reactions. Rate constants of 4.28(+/-0.06) x 10(6) M(-2) s(-1) and 2.83(+/-0.04) x 10(6) M(-2) s(-1) have been evaluated for the reaction of monohydroxy Fe(OH)2+ species with EGCg and ECG, respectively while rate constants for of 2.94(+/-0.4) x 10(4) M(-2) s(-1) and 2.41(+/-0.25) x 10(4) M(-2) s(-1) have been evaluated for the reaction of Fe3+ species with EGCg and ECG, respectively. The iron(III) assisted decomposition of the initial iron(III) complex formed was also investigated and the rate constants evaluated. Both the complex formation and subsequent electron transfer reactions of iron(III) with EGCg and ECG were monitored using UV-visible spectrophotometry. All of the suggested mechanisms and calculated rate constants are supported by calculations carried out using global analysis of time dependant spectra. The results obtained show that one molecule of either EGCg or EGC is capable of reducing up to four iron(III) species, a fact which is consistent with the powerful antioxidant properties of the ligands.  相似文献   

18.
Coenzyme F430 is a nickel porphinoid found in all methanogenic bacteria. Extended-X-ray-absorption-fine-structure (e.x.a.f.s.) spectra have been recorded above the nickel K-edge of coenzyme F430 and two model compounds, (5,10,15,20-tetramethylporphinato) nickel(II) and (5,10,15,20-tetramethylchlorinato)-nickel(II). The results show that the four nickel-nitrogen distances in F430 are split, with two nitrogen atoms at 0.192 nm and two at 0.210 nm.  相似文献   

19.
The interaction of hydroxypyridinones with human serum transferrin and ovotransferrin has been studied by analyzing the distribution of iron between the chelator and the proteins as a function of both ligand concentration and transferrin saturation. The kinetics of iron removal by 3-hydroxypyridin-4-ones from both transferrins is slow; in ovotransferrin it appears to be monophasic, in contrast to that observed for serum transferrin. After 24 hours incubation at a 40:1 chelator:protein molar ratio, the percentage of iron removed from Fe(III)-ovotransferrin is 50%-60%, and is somewhat higher in the case of serum transferrin, in line with the respective affinity constants for the metal. The 3-hydroxypyridin-2-ones and the 3-hydroxypyran-4-ones, both of which have lower affinities for Fe(III), remove smaller proportions of the metal. The percentage of desaturation obtained with bidentate and hexadentate pyridinones appears to be similar for both transferrin classes at chelator:protein molar ratios from 40:1. The degree of transferrin saturation influences the extent of chelator mediated iron mobilization in the case of serum transferrin, but not of ovotransferrin. 59Fe competition studies demonstrate that bidentate pyridin-4-ones are capable of donating iron to serum apotransferrin; the relative concentrations of ligand and protein influence the distribution of iron because their effective binding constants (at pH 7.4) for Fe(III) are similar.  相似文献   

20.
1. It is confirmed that there are two e.p.r. (electron-paramagnetic-resonance) signals associated with fully loaded ovotransferrin, which has two iron-binding sites. 2. Through experiments in which either of the two sites of whole ovotransferrin is occupied, the other being empty, the first occupied site is shown to belong to the N-terminal region of the protein; the second occupied site is in the C-terminal region. 3. When the protein is cleaved with trypsin or subtilisin, the N-terminal fragments are spectroscopically similar to the monoferric ovotransferrin complexes in which the iron atom occupies the N-terminal or C-terminal site respectively. Each fragment displays the same two e.p.r. signals, though not in the same proportions. 4. Computer summations of the e.p.r. spectra confirm that there is no iron-iron interaction which affects the spin Hamiltonian parameters at the iron-binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号