首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heme-peroxidases, such as horseradish peroxidase (HRP), are among the most popular catalysts of low density lipoprotein (LDL) peroxidation. In this model system, a suitable oxidant such as H2O2 is required to generate the hypervalent iron species able to initiate the peroxidative chain. However, we observed that traces of hydroperoxides present in a fresh solution of linoleic acid can promote lipid peroxidation and apo B oxidation, substituting H2O2.

Spectral analysis of HRP showed that an hypervalent iron is generated in the presence of H2O2 and peroxidizing linoleic acid. Accordingly, careful reduction of the traces of linoleic acid lipid hydroperoxide prevented formation of the ferryl species in HRP and lipid peroxidation. However, when LDL was oxidized in the presence of HRP, the ferryl form of HRP was not detectable, suggesting a Fenton-like reaction as an alternative mechanism. This was supported by the observation that carbon monoxide, a ligand for the ferrous HRP, completely inhibited peroxidation of LDL.

These results are in agreement with previous studies showing that myoglobin ferryl species is not produced in the presence of phospholipid hydroperoxides, and emphasize the relevance of a Fenton-like chemistry in peroxidation of LDL and indirectly, the role of pre-existing lipid hydroperoxides.  相似文献   

2.
Heme-peroxidases, such as horseradish peroxidase (HRP), are among the most popular catalysts of low density lipoprotein (LDL) peroxidation. In this model system, a suitable oxidant such as H2O2 is required to generate the hypervalent iron species able to initiate the peroxidative chain. However, we observed that traces of hydroperoxides present in a fresh solution of linoleic acid can promote lipid peroxidation and apo B oxidation, substituting H2O2.

Spectral analysis of HRP showed that an hypervalent iron is generated in the presence of H2O2 and peroxidizing linoleic acid. Accordingly, careful reduction of the traces of linoleic acid lipid hydroperoxide prevented formation of the ferryl species in HRP and lipid peroxidation. However, when LDL was oxidized in the presence of HRP, the ferryl form of HRP was not detectable, suggesting a Fenton-like reaction as an alternative mechanism. This was supported by the observation that carbon monoxide, a ligand for the ferrous HRP, completely inhibited peroxidation of LDL.

These results are in agreement with previous studies showing that myoglobin ferryl species is not produced in the presence of phospholipid hydroperoxides, and emphasize the relevance of a Fenton-like chemistry in peroxidation of LDL and indirectly, the role of pre-existing lipid hydroperoxides.  相似文献   

3.
It is shown that estradiol in the presence of horse radish peroxidase interacts with hydrogen peroxide, which is evidenced by an increase in its optical density at 280 nm. The photometering of samples containing estradiol and horse radish peroxidase upon their titration with hydrogen peroxide indicated that the increase in optical density stops after introducing hydrogen peroxide equimolar in concentration to estradiol. The stoichiometric ratio of estradiol consumed during oxidative destruction to hydrogen peroxide was 1:1. In the presence of ascorbate, the oxidative destruction of estradiol by the action of hydrogen peroxide, catalyzed by horse radish peroxidase, was observed only after a latent period and showed the same regularities as in the absence of ascorbate. It was found by calorimetry that, during the latent period, estradiol catalyzes the degradation of hydrogen peroxide and ascorbate without undergoing oxidative destruction. The substrates of the peroxidase reaction benzidine, 1-naphthol, and phenol interact with hydrogen peroxide in the presence of ascorbate and horse radish peroxidase in a similar way. Presumably, upon interaction with hydrogen peroxide in the presence of horse radish peroxidase, estradiol, like other substrates of this reaction, undergoes oxidative destruction by the mechanism of peroxidase reaction. It is shown that oxidative destruction of estradiol by the action of hydrogen peroxide can also be catalyzed by methemoglobin by the same mechanism. These data are important for understanding the role of estradiol in the organism and the pathways of its metabolic conversions.  相似文献   

4.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

5.
The decarboxylation of retinoic acid by horseradish peroxidase was investigated. A marked increase in the yield of products was obtained. However, the data indicated the reaction was a nonenzymatic, heme catalyzed peroxidation. Previously reported requirements for phosphate, oxygen and ferrous ion were eliminated when hydrogen peroxide was provided. Peroxide also eliminated the EDTA and cyanide induced inhibition of the phosphate dependent system. In the presence of hydrogen peroxide, horseradish peroxidase was not essential to the reaction; heme equivalent amounts of hemoglobin decarboxylated retinoic acid with equal facility. However, hemoglobin was ineffective in the absence of hydrogen peroxide. Attainment of 50--60% decarboxylation represented complete utilization of the available retinoic acid. Thus the products of the reaction can be divided into two groups, products of retinoic acid oxidation and products of an oxidative decarboxylation of retinoic acid.  相似文献   

6.
7.
8.
9.
Although human cancers are widely treated with anthracycline drugs, these drugs have limited use because they are cardiotoxic. To clarify the cardiotoxic action of the anthracycline drug adriamycin (ADM), the inhibitory effect on succinate dehydrogenase (SDH) by ADM and other anthracyclines was examined by using pig heart submitochondrial particles. ADM rapidly inactivated mitochondrial SDH during its interaction with horseradish peroxidase (HRP) in the presence of H(2)O(2) (HRP-H(2)O(2)). Butylated hydroxytoluene, iron-chelators, superoxide dismutase, mannitol and dimethylsulfoxide did not block the inactivation of SDH, indicating that lipid-derived radicals, iron-oxygen complexes, superoxide and hydroxyl radicals do not participate in SDH inactivation. Reduced glutathione was extremely efficient in blocking the enzyme inactivation, suggesting that the SH group in enzyme is very sensible to ADM activated by HRP-H(2)O(2). Under anaerobic conditions, ADM with HRP-H(2)O(2) caused inactivation of SDH, indicating that oxidized ADM directly attack the enzyme, which loses its activity. Other mitochondrial enzymes, including NADH dehydrogenase, NADH oxidase and cytochrome c oxidase, were little sensitive to ADM with HRP-H(2)O(2). SDH was also sensitive to other anthracycline drugs except for aclarubicin. Mitochondrial creatine kinase (CK), which is attached to the outer face of the inner membrane of muscle mitochondria, was more sensitive to anthracyclines than SDH. SDH and CK were inactivated with loss of red color of anthracycline, indicating that oxidative activation of the B ring of anthracycline has a crucial role in inactivation of enzymes. Presumably, oxidative semiquinone or quinone produced from anthracyclines participates in the enzyme inactivation.  相似文献   

10.
I Weinryb 《Biochemistry》1966,5(6):2003-2008
  相似文献   

11.
Phenol and its oxidized products are shown to be substrates in the HRP, H2O2 enzyme system. The homogeneous nature of the product of phenol oxidation suggests that the radical generated remains enzyme-bound until coupling occurs. Kinetics of the reaction was investigated and was suggestive of a three substrate ping-pong mechanism.  相似文献   

12.
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques.  相似文献   

13.
The reaction of ribose with horseradish peroxidase in the presence of H2O2 is accompanied by light emission. The detection of horseradish peroxidase Compound II (FeO2+) indicates that the enzyme participates in a normal peroxidatic cycle. Hydrogen peroxide converts horseradish peroxidase into Compound I (FeO3+) which in turn is converted into Compound II by abstracting a hydrogen atom from ribose forming a ribosyl radical. In aerated solutions oxygen rapidly adds to the ribosyl radical. Based on the spectral characteristics and the enhancement of the chemiluminescence by chlorophyll-a, xanthene dyes, D2O and DABCO, it is suggested that the excited species, apparently triplet carbonyls and 1O2, are formed from the bimolecular decay of the peroxyl radicals via the Russell mechanism.  相似文献   

14.
A kinetic study has been carried out over the pH range of 2.63-9.37 for the reaction of horseradish peroxidase with hydrogen peroxide to form compound I of th;e enzyme. Analysis of the results, indicates that there are two kinetic influencing, ionizable groups on the enzyme with pKa values of 3.2 and 3.9. Protonation of these groups results in a decrease in the rate of reaction of the enzyme with H2O2. A previous study of the kinetics of cyanide binding to horseradish peroxidase (Ellis, W.D. & Dunford, H.B.: Biochemistry 7, 2054-2062 (1968)) has been extended to down to pH 2.55, and analysis of these results also indicates the presence of two kinetically important ionizable groups on the enzyme with pKa values of 2.9 and 3.9.  相似文献   

15.
Peroxidases perform the nitration of tyrosine and tyrosyl residues in proteins, in the presence of nitrite and hydrogen peroxide. The nitrating species is still unknown but it is usually assumed to be nitrogen dioxide. In the present investigation, the nitration of phenolic compounds derived from tyrosine by lactoperoxidase and horseradish peroxidase was studied, with the aim of elucidating the mechanism of the reaction. The results indicate that nitrogen dioxide cannot be the only nitrating species and suggest the presence of two simultaneously operative pathways, one proceeding through enzyme-generated nitrogen dioxide and another through a more reactive species, assumed to be complexed peroxynitrite, which is generated by reaction of hydrogen peroxide with the enzyme-nitrite complex. The importance of the two pathways depends on peroxide and nitrite concentrations. With lactoperoxidase, nitration through the highly reactive intermediate is preferred except at very low nitrite concentration, while with horseradish peroxidase, the nitrogen dioxide driven mechanism is preferred except at very high nitrite concentration. The preferred mechanism for the two enzymes is that operative in the physiological nitrite concentration range.  相似文献   

16.
17.
Reactions of ferric horseradish peroxidase with hydrogen cyanide and hydrogen peroxide were studied as a function of pressure. Activation volumes are small and differ in sign (delta V = 1.7 +/- 0.5 ml/mol for peroxidase + HCN and -1.5 +/- 0.5 ml/mol for peroxidase + H2O2). The temperature dependence of cyanide binding to horseradish peroxidase was also determined. A comparison is made of relevant parameters for cyanide binding and compound I formation.  相似文献   

18.
19.
Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H(2)O(2). The pH effect on amperometric response to H(2)O(2) was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.  相似文献   

20.
A kinetic study of o-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase within the pH range of 3.7-9.0 has been carried out. It was shown that the reaction of o-dianisidine peroxidase oxidation obeys the Michaelis--Menten kinetics; the kcat and Km values within the pH range used were determined. The optimum of peroxidase catalytic activity during o-dianisidine oxidation was observed at pH 5.0-6.0. The kinetic pattern of the reaction is discussed. It was demonstrated that deprotonation of the group at pK 6.5 decreases the kcat value 60 times. At pH greater than 8.0 an additional ionogenic group controls the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号