首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flux of glucose carbon to total body fatty acids was measured in unanesthetized mice either after fasting or 50-80 min after they nibbled a small test meal containing 120 mg of glucose (fasted-refed). Flux was calculated from plasma [(14)C]glucose specific activity curves and from total body (14)C-labeled fatty acid 30 min after intravenous injection of tracer [(14)C]glucose. Mobilization of liver glycogen, changes in the body glucose pool size, and total flux of carbon through the glucose pool during periods of fasting and refeeding were defined. Liver glycogen was almost completely depleted 8 hr after food removal. Body glucose pool size fell during fasting and increased after refeeding the test meal. Irreversible disposal rate of glucose C varied directly with body glucose pool size; but flux of glucose C into fatty acids increased exponentially as body glucose concentration increased. Within an hour after nibbling a small test meal, the flux of glucose C into total body fatty acids increased 700% in mice previously starved for 24 hr. However, flux of glucose C into fatty acids in postabsorptive mice (food removed for 2 hr; livers rich in glycogen) was only about 2% of the value calculated from published studies in which the incorporation of an intubated [(14)C]glucose load into total body fatty acid was measured in mice. A possible explanation for this phenomenon is presented.  相似文献   

2.
Lipogenic activation after nibbling and gorging in mice   总被引:2,自引:0,他引:2  
Lipogenic activation was studied in mice that had been restricted to a single large meal once a day rather than being allowed to eat at frequent intervals throughout the night. Mice were injected intravenously with [U-(14)C]glucose, and the flux of glucose C to total lipid fatty acids (TLFA) and to all "end products" was estimated from serial plasma glucose specific activities and measurements of incorporation of (14)C into TLFA of hepatic and extrahepatic tissues. Tracer studies were carried out in mice fasted for 1 day and at various times after the mice ate one or two small test meals or a single large test meal. Test meals consisted of a fat-free, 58% glucose diet. The flux of glucose C to TLFA increased by an order of magnitude within an hour after mice nibbled a test meal for several minutes. After ingestion of two small test meals or a single large test meal, the flux of glucose C to TLFA increased from a fasting rate of 0.5 to 35 and 87 micro g of glucose C/min/20 g body wt, respectively. Although trained meal eaters are thought to have abnormally increased lipogenesis, their lipogenic response to a single test meal was the same as that previously reported for untrained nibbling mice. Most of the newly synthesized fatty acids were found in extrahepatic tissues. Ingestion of a first test meal completely prevented the expected hyperglycemic response following ingestion of a second test meal even though the latter contained over 10 times more glucose than that in the total body glucose pool.  相似文献   

3.
Synthesis of fatty acids in the perfused mouse liver   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.  相似文献   

4.
Quantitative aspects of free fatty acid metabolism in the fasted rat   总被引:9,自引:0,他引:9  
Palmitate-1-(14)C was injected intravenously into unanesthetized, fasted rats. Disappearance of tracer from plasma free fatty acids was studied. A large component of free fatty acid (FFA) recycling was directly demonstrated by reinjection experiments. The latter studies also indicated the existence of an unidentified, rapidly turning over polar lipid in plasma which was synthesized from palmitate-(14)C. The appearance of (14)C in hepatic and extrahepatic triglycerides, in other esters, and in respired CO(2) was also followed. The data were analyzed using a multicompartmental model and a digital computer. Only a small fraction of the triglycerides formed in liver was derived directly from plasma free fatty acids. The major portion of net triglyceride formation appeared to be by way of an intermediate nontriglyceride ester pool which turned over relatively slowly compared to plasma free fatty acids. Initial approximations are as follows ( micromoles of fatty acid per min per 100 g body weight): net free fatty acid mobilization (irreversible disposal) = 2.4; hepatic triglyceride formation directly from plasma free fatty acid = 0.1; total hepatic lipid formation from plasma free fatty acids = 0.5; oxidation of free fatty acids to CO(2) = 0.8; percentage of respired CO(2) from direct oxidation of fatty acids = 12%; extrahepatic triglyceride formation directly from fatty acids = 0.4; total extrahepatic lipid formed directly from fatty acids = 1.2.  相似文献   

5.
Parameters of plasma free fatty acid metabolism (pool size, half time, disappearance rate, turnover time and absolute turnover rate), the influx of plasma free fatty acids into the glycerides of brown adipose tissue and the pathway of triglyceride synthesis in brown adipose tissue (glycerol-1-phosphate versus monoglyceride pathway) were examined after intravenous injection of [1-14C]palmitate in newborn rabbits. In the thermoneutral environment of 35 degrees C the turnover rate of plasma free fatty acids was 10.20 mumol/min per 100 g body weight and its flux into the glycerides of brown adipose tissue 0.367 mumol/min per 100 g body weight. Cold exposure at an ambient temperature of 20 degrees C caused a decrease to 5.84 mumol/min and 0.207 mumol/min per 100 g body weight, respectively. Both under basal conditions at an ambient temperature of 35 degrees C and under cold-induced thermogenesis at an ambient temperature of 20 degrees C triglyceride synthesis in brown adipose tissue ran through the glycerol 1-phosphate pathway.  相似文献   

6.
Previous genetic and proteomic studies identified altered activity of various enzymes such as those of fatty acid metabolism and glycogen synthesis after a single toxic dose of valproic acid (VPA) in rats. In this study, we demonstrate the effect of VPA on metabolite synthesis flux rates and the possible use of abnormal 13C labeled glucose-derived metabolites in plasma or urine as early markers of toxicity. Female CD-1 mice were injected subcutaneously with saline or 600 mg/kg) VPA. Twelve hours later, the mice were injected with an intraperitoneal load of 1 g/kg [U-13C]-d-glucose. 13C isotopomers of glycogen glucose and RNA ribose in liver, kidney and brain tissue, as well as glucose disposal via cholesterol and glucose in the plasma and urine were determined. The levels of all of the positional 13C isotopomers of glucose were similar in plasma, suggesting that a single VPA dose does not disturb glucose absorption, uptake or hepatic glucose metabolism. Three-hour urine samples showed an increase in the injected tracer indicating a decreased glucose re-absorption via kidney tubules. 13C labeled glucose deposited as liver glycogen or as ribose of RNA were decreased by VPA treatment; incorporation of 13C via acetyl-CoA into plasma cholesterol was significantly lower at 60 min. The severe decreases in glucose-derived carbon flux into plasma and kidney-bound cholesterol, liver glycogen and RNA ribose synthesis, as well as decreased glucose re-absorption and an increased disposal via urine all serve as early flux markers of VPA-induced adverse metabolic effects in the host.  相似文献   

7.
The rates of glycolysis and lipogenesis in isolated perfused liver of well-fed rats were studied. When liver was allowed to synthesize [14C]glycogen prior to perfusion, no more than 9% of the degraded [14C]glycogen was recovered in lactate and 6% in lipid. Addition of glucose, fructose and sorbitol enhanced concomitantly the formation of lactate and pyruvate and the rate of release of triglyceride and free fatty acid. Glucose was less efficient than fructose or sorbitol. The incorporation of 14C from these 14C-labelled substrates into lactate, pyruvate and lipids confirmed their role as carbon sources. Incorporation of 14C into the glycerol moiety of neutral lipid exceeded that found in the fatty acids, suggesting that these substrates contributed largely to the esterification of fatty acids. The total rate of de novo fatty acid synthesis was correlated with the formation of lactate and pyruvate. It is concluded that increased rates of aerobic glycolysis are related to increased rates of lipogenesis.  相似文献   

8.
Insulin infusion through the portal vein immediately after a pulse of [3-14C]pyruvate in 24 hr starved rats enhanced the appearance of [14C]glucose at 2, 5 and 10 min and glucose specific activity at 1, 2 and 20 min in blood collected from the cava vein at the level of the suprahepatic veins. Insulin infusion for 5 min decreased liver pyruvate concentration and enhanced both liver and plasma lactate/pyruvate ratio, and it decreased the plasma concentration of all amino acids. When insulin was infused together with glucose, [14C]glucose levels and glucose specific activity decreased in blood but there was a marked increase in liver [14C]glycogen, glycogen specific activity and glycogen concentration, and an increase in liver lactate/pyruvate ratio. The effect of insulin plus glucose infusion on plasma amino acids concentration was smaller than that found with insulin alone. It is proposed that insulin effect enhancing liver gluconeogenesis is secondary to its effect either enhancing liver glycolysis which modifies the liver's cytoplasmic oxidoreduction state to its more reduced form, increasing liver amino acids consumption or both. In the presence of glucose, products of gluconeogenesis enhanced by insulin are diverted into glycogen synthesis rather than circulating glucose. This together with results of the preceding paper (Soley et al., 1985), indicates that glucose enhances liver glycogen synthesis from C3 units in the starved rat, the process being further enhanced in the presence of insulin.  相似文献   

9.
1. Lipogenesis was studied in vivo by giving mice 250mg. meals of [U-(14)C]glucose and measuring the disposition and incorporation of label. About 48% of the (14)C dose was eliminated as (14)CO(2) in the first 2hr. At 60min. after administration, 1.0, 1.9 and 11.9% of the dose was recovered as liver glycogen, liver fatty acid and carcass fatty acid respectively. Of the [(14)C]glucose converted into fat in the epididymal pads about 90% was present as glyceride fatty acid and 10% as glyceride glycerol. 2. Hepatic synthesis of fatty acid was depressed by dietary fat to a much greater extent than was synthesis outside the liver. Both feeding with fat and starvation decreased the proportion of the label taken up by adipose tissue present as fat (triglyceride) and increased the proportion of triglyceride label present as glyceride glycerol. These results are consistent with the hypothesis that the primary action of both these conditions in decreasing fat synthesis is to inhibit synthesis of fatty acids. 3. Turnover of body fat labelled in vivo from [U-(14)C]glucose was estimated from the decline in radioactivity measured over the first 24hr. of the experiment. The half-life of liver and extrahepatic fatty acids (excluding epididymal fat) was 16hr. and 3 days respectively. In contrast, no measurable decrease in radioactivity of the fatty acids of epididymal fat was observed for 7 days after administration of the [U-(14)C]glucose.  相似文献   

10.
The appearance of plasma [14C]glucose in the inferior cava vein after a pulse of 0.2 mmol of [U-14C]L-alanine or [U-14C]glycerol/200 g body wt given through the portal vein was studied in fed 21 day pregnant rats and virgin controls under pentobarbital anesthesia. In both groups values were much higher when [U-14C]glycerol was the administered tracer than when [U-14C]L-alanine, and they were augmented in pregnant versus virgin animals at 1 min when receiving [U-14C]glycerol and at 2 min when receiving [U-14C]L-alanine. 20 min after the tracers rats receiving [U-14C]glycerol showed much higher liver [14C]glycogen and [14C]glyceride glycerol than those receiving [U-14C]L-alanine. Radioactivity present in liver as [14C]glyceride glycerol was greater in pregnant than in virgin rats receiving [U-14C]glycerol whereas radioactivity corresponding to [14C]fatty acids was lower in the former group receiving either tracer. At 20 min after maternal treatments fetuses showed lower plasma [14C]glycerol than [14C]alanine values but plasma [14C]glucose and liver [14C]glycogen values were much greater in fetuses from mothers receiving [U-14C]glycerol than [U-14C]L-amine. Besides showing the higher gluconeogenic efficiency in pregnant than in virgin rats, results indicate that at late gestation glycerol is used as a preferential substrate for both glucose and glyceride glycerol synthesis in liver.  相似文献   

11.
1. Lipoproteins in the plasma of mice were characterized by agarose-gel chromatography and polyacrylamide-gel electrophoresis: genetically obese (ob/ob) mice exhibited hyperlipoproteinaemia (compared with lean mice), largely owing to an increase in the concentration of cholesterol in high-density lipoprotein. Plasma concentrations of triglyceride and phospholipid were not markedly increased in genetically obese mice. 2. The formation of glycerolipids in liver and plasma was investigated with (14)C-labelled precursors. The synthesis of hepatic triglyceride and phospholipid from glucose or palmitate was enhanced in ob/ob mice, compared with lean mice. The rate of entry of triglyceride into plasma, calculated from the time-course of incorporation of (14)C from [(14)C]palmitate into plasma triglyceride, was increased in ob/ob mice (0.5mumol of fatty acid/min, compared with 0.2 in lean mice). 3. The removal from plasma of murine lipoprotein triglyceride-[(14)C]fatty acid was increased in ob/ob mice (half-time 2.2min, compared with 7.2min in lean mice). Similar results were obtained with an injected lipid emulsion (Intralipid). 4. From these measurements, estimates of the rates of turnover of plasma triglyceride in mice (fed on a mixed diet, female, 3 months old) are about 1.0mumol of fatty acid/min in ob/ob mice, and 0.25 in lean mice. 5. The major precursor of hepatic and plasma triglyceride in lean and ob/ob mice was calculated to be plasma free fatty acid. 6. These results are discussed, in connexion with the role of the liver in triglyceride metabolism in mice, especially in relation to genetic obesity.  相似文献   

12.
The effects of starvation and force-feeding on certain tissue and blood constituents were studied in the Northern pike, Esox lucius L. Starvation resulted in a reduction of liver and muscle glycogen and liver lipid. Blood glucose concentration and haematocrit were reduced, total plasma cholesterol levels were increased, while the levels of plasma free fatty acids (FFA), amio acid nitrogen and protein remained unaltered. No significant changes were observed in either muscle protein, muscle water or the response to amino acid loading during the starvation period.
The force-feeding of pike starved for 3 months resulted in liver lipid and muscle glycogen being increased to levels higher than those observed in freshly-captured fish. Liver glycogen, however, increased to values only slightly higher than those of starved animals. Furthermore, while force-feeding had little effect on plasma FFA or protein concentrations, blood glucose, plasma cholesterol and haematocrit returned to the levels found in freshlycaptured fish and those of amino acid nitrogen were higher.
The results indicate that pike are well adapted for periods of prolonged starvation and that hepatic and extra-hepatic lipid and glycogen stores serve for metabolic needs during food shortage, while body protein is conserved. The endocrine basis for these changes in the tissue and blood constituents is discussed.  相似文献   

13.
Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions.  相似文献   

14.
Flux through the glucose/glucose 6-phosphate cycle in cultured hepatocytes was measured with radiochemical techniques. Utilization of [2-3H]glucose was taken as a measure of glucokinase flux. Liberation of [14C]glucose from [U-14C]glycogen and from [U-14C]lactate, as well as the difference between the utilization of [2-3H]glucose and of [U-14C]glucose, were taken as measures of glucose-6-phosphatase flux. At constant 5 mM-glucose and 2 mM-lactate concentrations insulin increased glucokinase flux by 35%; it decreased glucose-6-phosphatase flux from glycogen by 50%, from lactate by 15% and reverse flux from external glucose by 65%, i.e. overall by 40%. Glucagon had essentially no effect on glucokinase flux; it enhanced glucose-6-phosphatase flux from glycogen by 700%, from lactate by 45% and reverse flux from external glucose by 20%, i.e. overall by 110%. At constant glucose concentrations cellular glucose 6-phosphate concentrations were essentially not altered by insulin, but were increased by glucagon by 230%. In conclusion, under basic conditions without added hormones the glucose/glucose 6-phosphate cycle showed only a minor net glucose uptake, of 0.03 mumol/min per g of hepatocytes; this flux was increased by insulin to a net glucose uptake of 0.21 mumol/min per g and reversed by glucagon to a net glucose release of 0.22 mumol/min per g. Since the glucose 6-phosphate concentrations after hormone treatment did not correlate with the glucose-6-phosphatase flux, it is suggested that the hormones influenced the enzyme activity directly.  相似文献   

15.
1. Measurements were made of milk yield, mammary blood flow and arteriovenous differences of each plasma lipid fraction, and their specific radioactivities, during the infusion of [U-14C]stearate, [U-14C]oleate, [U-14C]palmitate and [1-14C]acetate into fed lactating goats. 2. Entry rates of fatty acids into the circulation were 4·2mg./min./kg. body wt. for acetate, and 0·18, 0·28 and 0·42mg./min./kg. for stearate, oleate and palmitate respectively. Acetate accounted for 23% of the total carbon dioxide produced by the whole animal, and contributed to the oxidative metabolism of the mammary gland to about the same extent. Corresponding values for each of the long-chain acids were less than 1%. 3. There were no significant arteriovenous differences of phospholipids, sterols or sterol esters, and their fatty acid composition showed no net changes during passage through the mammary gland. 4. There were large arteriovenous differences of plasma triglycerides, and their fatty acid composition showed marked changes across the gland. The proportions of palmitate and stearate fell, and that of oleate increased. 5. Arteriovenous differences of plasma free fatty acids (FFA) were small and variable, but a large fall in the specific radioactivity of each of the long-chain acids examined indicated substantial uptake of plasma FFA, accompanied by roughly equivalent FFA release from mammary tissue. The uptake of FFA was confirmed by the extensive transfer of radioactivity into milk. The FFA of milk were similar in composition and radioactivity to the milk triglyceride fatty acids, and quite unlike plasma FFA. 6. The formation of large amounts of oleic acid (18–21 mg./min.) from stearic acid was demonstrated. 7. During the terminal stages of the [14C]acetate infusion, milk triglyceride fatty acids of chain length C4–C14 showed specific radioactivities that were 75–90% of that of blood acetate, and that of palmitate was roughly one-quarter of this value. Oleate and stearate were unlabelled. 8. The results confirmed that milk fatty acids of chain length C4–C14 arise largely from blood acetate, and palmitate is derived partly from acetate and partly from plasma triglyceride, the latter fraction being almost the sole precursor of oleate and stearate.  相似文献   

16.
1. [U-(14)C]Glucose was injected into mice and the distribution of (14)C in various chemical fractions of the whole body was determined at times from 15min. to 8hr. after injection. 2. At 1hr. after injection 31.8% of the recovered (14)C was found in the expired air and 26.7% was found in the isolated glycogen, lipids, proteins, nucleic acids and in other acid-insoluble carbon compounds (;residual (14)C'). The rest (41.5%) was combined in acid-soluble substances. 3. When insulin was injected 5min. or 1hr. before injection of [U-(14)C]glucose, and the mouse was killed 1hr. later, the (14)C content of expired air, glycogen, protein and ;residual (14)C' was not significantly affected; but the incorporation of (14)C into lipids was increased two- to three-fold. 4. Chromatography of the lipids on silicic acid columns and by thin-layer chromatography showed that the main effect of insulin injection was to increase the incorporation of (14)C into fatty acids. 5. A significant increase of (14)C after insulin injection was also found in a glyceride in which the (14)C was combined in glycerol.  相似文献   

17.
In this paper, the composition and biological activities of polysaccharides from Inula britannica flower IBP obtained by water extraction were investigated. The properties and chemical compositions of IBP were analyzed with HPLC and IR methods. The results showed that IBP consisted of two kinds of polysaccharides with the molecular weight of 3500Da, 700Da. IBP consisted of mannose, glucuronic acid, rhamnose, galacturonic acid, glucose, galactose, arabinose with a molar ratio of 4.1:1:1.4:2.7:14.6:6.3:7.9. The IR spectrum of IBP revealed the typical characteristics of polysaccharides and protein. IBP was administered orally at three doses [100, 200 and 400mg/kg body weight] for 14 days to the diabetic mice induced by alloxan. The body weight, plasma glucose, serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and liver glycogen were evaluated in normal and alloxan-induced diabetic mice. IBP could dose-dependently significantly increase the body weight of diabetic mice, and reverse the decrease of plasma glucose, glycogen and the decrease of blood lipid of diabetic mice as compared to those in control group. These results indicated that IBP could be developed to a potential anti-diabetic drug in the future.  相似文献   

18.
To examine the mechanism by which muscle glycogen limits its own synthesis, muscle glycogen and glucose 6-phosphate (G-6-P) concentrations were measured in seven healthy volunteers during a euglycemic ( approximately 5.5 mM)-hyperinsulinemic ( approximately 450 pM) clamp using (13)C/(31)P nuclear magnetic resonance spectroscopy before and after a muscle glycogen loading protocol. Rates of glycogen synthase (V(syn)) and phosphorylase (V(phos)) flux were estimated during a [1-(13)C]glucose (pulse)-unlabeled glucose (chase) infusion. The muscle glycogen loading protocol resulted in a 65% increase in muscle glycogen content that was associated with a twofold increase in fasting plasma lactate concentrations (P < 0.05 vs. basal) and an approximately 30% decrease in plasma free fatty acid concentrations (P < 0.001 vs. basal). Muscle glycogen loading resulted in an approximately 30% decrease in the insulin-stimulated rate of net muscle glycogen synthesis (P < 0.05 vs. basal), which was associated with a twofold increase in intramuscular G-6-P concentration (P < 0.05 vs. basal). Muscle glycogen loading also resulted in an approximately 30% increase in whole body glucose oxidation rates (P < 0.05 vs. basal), whereas there was no effect on insulin-stimulated rates of whole body glucose uptake ( approximately 10.5 mg. kg body wt(-1). min(-1) for both clamps) or glycogen turnover (V(syn)/V(phos) was approximately 23% for both clamps). In conclusion, these data are consistent with the hypothesis that glycogen limits its own synthesis through feedback inhibition of glycogen synthase activity, as reflected by an accumulation of intramuscular G-6-P, which is then shunted into aerobic and anaerobic glycolysis.  相似文献   

19.
The incorporation of 14C from [U-14C] glucose and 3H from 3H2O into the total lipids fatty acids and glycogen of the liver incorporation of 3H from 3H2O into blood glucose was studied in rats totally irradiated in a dose of 14.4 Gy. It is shown that in the liver of irradiated rats glucose is accumulated in considerable amounts as glycogen but it is slightly used as a source of carbon for lipid synthesis. The study of 3H incorporation shows that irradiation stimulates glucogenesis, glyconeogenesis and lipogenesis in the liver.  相似文献   

20.
Male chickens (Gallus domesticus) were treated with 17 beta-oestradiol then injected with a mixture of [6-3H]glucose and [U-14C]glucose. Subsequently, blood samples were taken to determine plasma lipid levels and several parameters of glucose metabolism, including entry rate, carbon recycling, mean transit time, the total body glucose mass, the mass of the sampling pool and the rate of outflow from this pool. Oestrogen-treated birds exhibited typical hyperlipidaemia, with significantly elevated plasma levels of triacylglyerol and nonesterified fatty acids. Oestrogen administration significantly decreased the glucose entry rate, the total body glucose mass and the rate of outflow from the sampling pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号