首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of PGE(2) on longitudinal smooth muscle, the intracellular mechanisms involved, and the localization of EP receptors were investigated in rabbit small intestine. PGE(2) evoked contractions in small intestine that were reduced by tetrodotoxin and hexamethonium. 17-Phenyl trinor PGE(2), sulprostone, misoprostol and 16,16-dimethyl PGE(2) evoked contractions. Butaprost did not modify spontaneous motility. AH 6809 reduced PGE(2) and 17-phenyl trinor PGE(2)-induced contractions. Verapamil, Ca(2+) free medium, staurosporine, forskolin, theophylline, and rolipram diminished, while IP-20 and H-89 increased PGE(2)-induced contractions. Western blot analysis showed protein bands of 41kDa for EP(1), 71kDa for EP(2) and 62kDa for EP(3) receptors. EP(1), EP(2) and EP(3) receptors were detected in neurons of the myenteric and submucosal ganglia, but only EP(3) receptors were found in smooth muscle layers. This study did not detect EP(4) receptor. PGE(2)-induced contractions would be mediated through EP(1) and EP(3) receptors, and voltage-dependent Ca(2+) channels, protein kinase C, and cAMP would be implicated in these responses.  相似文献   

2.
We have recently demonstrated that atopic T lymphocytes have decreased sensitivity to prostaglandin E2 (PGE2). In order to determine whether this decreased sensitivity was reflected at the receptor level, we have employed a radioligand binding assay utilizing [3H]PGE2. We have demonstrated a single specific reversible binding site for [3H]PGE2 on normal T cells (N = 10) with a mean KD (+/-SD) of 32.2 (+/-25.0) nM, a binding capacity of 20.2 (+/-13.0) pM, and a mean of 1004 (+/-118) receptors per cell. Atopic T cells (N = 10) were also found to have a single specific binding site for [3H]PGE2 with a mean KD of 24.9 (+/-17.8) nM, a binding capacity of 7.1 (+/-10.1) pM, and a mean of 372 (+/-61) receptors per cell. These radioligand binding studies were correlated with functional studies in the same subjects. Phytohemagglutinin-stimulated protein synthesis ([3H]leucine uptake) was suppressed in a dose-dependent fashion by PGE2 (10(-6)-10(-12) M). The maximal effect of PGE2 on normal T cells was 10(-6) M PGE2 with an IC50 of 10(-12) M. Atopic T cells responded quantitatively less than normal T cells to PGE2. Further, the maximum suppression of protein synthesis by PGE2 occurred at 10(-6) M with an IC50 of 10(-10) to 10(-11) M. These studies suggest that part of the decreased sensitivity of atopic T cells to PGE2 may result from a reduction in PGE2 binding sites.  相似文献   

3.
Isolated cells of rat gastric mucosa were obtained by treatment of rat stomach with pronase. Two fractions were isolated, one of which was rich (up to 90%) and the second one poor (to 25%) of parietal cells. Using specific antagonists and agonists of H1- and H2-receptors of histamine (diphenhydramine, metiamide, cimetidine, impromidine, dimaprit) the H2-receptors of histamine were shown to be localized in parietal cells. A preferential binding of (3H)prostaglandin E2 by the receptor proteins of plasma membranes of non-parietal (presumably mucoid) cells was found. The data obtained indicate that rat gastric mucosa contains receptors of histamine and PGE2 which differ in their intracellular localization and strictly selectively bind (3H)histamine and (3H)PGE2. It is assumed that the starting point in the mechanism of action of these intercellular regulators on gastric secretion is probably the process of their specific recognition by the protein receptors localized in functionally different cells.  相似文献   

4.
Summary The muscarinic cholinergic innervation of the rat gastric mucosa was investigated by localizing the muscarinic receptors using a tritiated muscarinic antagonist, pirenzepine. Radioautography was performed by freeze drying stomach tissue, which was then embedded in Epon and wet sectioned with ethylene glycol, and dry mounting on emulsion film by the wire-loop method to prevent loss of the labelled substance during fixation and the radioautographic procedure. Light and electron microscopy showed that the specific pirenzepine-binding sites were localized predominantly on parietal cells, chief cells and perivascular plexuses. Analysis of the grain distribution on parietal cells revealed that the silver grains corresponding to the pirenzepine-binding sites were mainly on the basolateral plasma membrane. On the other hand, the surface mucous or mucous neck cells had few pirenzepine-binding sites.  相似文献   

5.
The kidney plays a central role in long-term regulation of arterial blood pressure and salt and water homeostasis. This is achieved in part by the local actions of paracrine and autacoid mediators such as the arachidonic acid-prostanoid system. The present study tested the role of specific PGE(2) E-prostanoid (EP) receptors in the regulation of renal hemodynamics and vascular reactivity to PGE(2). Specifically, we determined the extent to which the EP(2) and EP(3) receptor subtypes mediate the actions of PGE(2) on renal vascular tone. Renal blood flow (RBF) was measured by ultrasonic flowmetry, whereas vasoactive agents were injected directly into the renal artery of male mice. Studies were performed on two independent mouse lines lacking either EP(2) or EP(3) (-/-) receptors and the results were compared with wild-type controls (+/+). Our results do not support a unique role of the EP(2) receptor in regulating overall renal hemodynamics. Baseline renal hemodynamics in EP(2)-/- mice [RBF EP(2)-/-: 5.3 +/- 0.8 ml. min(-1). 100 g kidney wt(-1); renal vascular resistance (RVR) 19.7 +/- 3.6 mmHg. ml(-1). min. g kidney wt] did not differ statistically from control mice (RBF +/+: 4.0 +/- 0.5 ml. min(-1). 100 g kidney wt(-1); RVR +/+: 25.4 +/- 4.9 mmHg. ml(-1). min. 100 g kidney wt(-1)). This was also the case for the peak RBF increase after local PGE(2) (500 ng) injection into the renal artery (EP(2)-/-: 116 +/- 4 vs. +/+: 112 +/- 2% baseline RBF). In contrast, we found that the absence of EP(3) receptors in EP(3)-/- mice caused a significant increase (43%) in basal RBF (7.9 +/- 0.8 ml. min(-1). g kidney wt(-1), P < 0.05 vs. +/+) and a significant decrease (41%) in resting RVR (11.6 +/- 1.4 mmHg. ml(-1). min. g kidney wt(-1), P < 0.05 vs. +/+). Local administration of 500 ng of PGE(2) into the renal artery caused more pronounced renal vasodilation in EP(3)-/- mice (128 +/- 2% of basal RBF, P < 0.05 vs. +/+). We conclude that EP(3 )receptors mediate vasoconstriction in the kidney of male mice and its actions are tonically active in the basal state. Furthermore, EP(3) receptors are capable of buffering PGE(2)-mediated renal vasodilation.  相似文献   

6.
The aim of this study was to evaluate, by means of an immunoenzymatic assay, the membranous and cytosolic c-erbB-2 oncoprotein contents in primary tumors and in adjacent mucosa from gastric cancer patients. Fifty-two patients with primary gastric adenocarcinomas were enrolled in this prospective study. c-erbB-2 protein levels were significantly higher in membranous than in cytosolic samples, both in neoplastic tissues (median: 3602 vs 525 NHU/mg protein; p<0.0001) and in adjacent mucosa samples (median: 3174 vs 509 NHU/mg protein; p<0.0001). Nevertheless, there was a significant positive relation between membranous and cytosolic c-erbB-2 protein contents in both neoplastic tissue (p<0.001) and adjacent mucosa (p<0.001) samples. There was no significant difference in the membranous c-erbB-2 protein content between neoplastic tissues and adjacent mucosa samples. However, the cytosolic c-erbB-2 content was significantly higher in neoplastic tissues than in adjacent mucosa (p<0.05). Finally, the results did not show any significant correlations of these oncoprotein contents with patient characteristics, clinicopathologic parameters and overall survival of the study population.  相似文献   

7.
In gastrointestinal research the in vitro release of prostaglandins from incubated or cultured biopsies is a widely used method to estimate prostaglandin synthesis. We therefore investigated the rate limiting mechanisms of PGE2 release in organ cultured gastric mucosa of the rabbit, determining PGE2 secretion from organ cultured mucosal biopsies by radioimmunoassay and prostaglandin synthesizing capacity by in vitro incubation of mucosal homogenate or microsomes with [14C]-arachidonic acid. Freshly taken biopsies secreted PGE2 at an initial high rate, that decreased during the following 4 hrs of culture. This PGE2 release was dose dependently reduced by inhibitors of the prostaglandin cyclooxygenase. 5mM acetylsalicylic acid (ASA) maximally suppressed PGE2 secretion to 7% of controls, and the inhibition by ASA was quantitatively similar at every given culture period. PGE2 release was markedly increased by carbenoxolone but was only slightly activated by extracellular calcium and the Ca(++)-ionophore A23187. However, Ca++/A23187 were unable to maintain PGE2 secretion at the initial rate. PGE2 secretion was undisturbed in calcium-free medium but was reduced to 50-60% of controls by excess EDTA. The intracellular calcium chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N',-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) similarly inhibited PGE2 release to 72% of controls. In contrast, PGE2 release was unaffected by the intracellular calcium antagonist 3,4,5-trimethylene-bis(4-formylpyridinium bromide) dioxime (TMB-8), the calmodulin antagonists N-(6-aminohexyl)-1-5-chloro-1-naphthalenesulfonamide (W-7) and calmidazolium (compound R24571) or various direct inhibitors of endogenous arachidonic acid release like tetracaine, bromophenacyl bromide, neomycin or low dose quinacrine, indicating that the reduction of PGE2 release by EDTA or BAPTA may be mediated by mechanisms different from substrate release. In contrast, an inhibition of PGE2 secretion by quinacrine at high concentrations (greater than or equal to 0.8 mM) was attributed to a direct inhibition of the prostaglandin cyclooxygenase, similar to ASA. Finally, the reduction of the prostaglandin synthesizing capacity by ASA was strongly correlated with the inhibition of PGE2 secretion, also at low concentrations and minor degrees of inhibition. From these data we conclude, that the activity of the prostaglandin cyclooxygenase is rate limiting for PGE2 secretion from organ cultured mucosal biopsies rather than arachidonic acid release by a phospholipase A2. This should be considered for interpretation of studies based on prostaglandin release from cultured mucosa.  相似文献   

8.
9.
Gastric mucosal PG E2 receptors are the common antisecretory working point of all prostanoid types and may also be involved in "protective" effects. We investigated the subcellular localization of these receptors, as measured by displaceable 3H-PG E2 binding, and identified different organelles by monitoring the activities of specific marker enzymes. Porcine mucosal homogenates were subdivided by differential centrifugation into fractions P1 (1000 x g), P2 (20,000 x g), P3 (300,000 x g) and the supernatant S1. P3 was further fractionated over a series of sucrose step gradients. Mitochondria and lysosomes were enriched in P2 (maximum specific activities of cytochrome-c-oxidase of beta-glucosidase, beta-glucuronidase, beta-galactosidase, respectively). Plasma membranes (alkaline phosphatase, gamma-glutamyl-transpeptidase, 5-nucleotidase), tubulovesicles (H+/K(+)-ATPase) and rough endoplasmic reticulum (NADPH-cytochrome-c-reductase) were mainly found in P3, which also contained the majority of 3H-PG E2 binding sites. In contrast, prostanoid binding was barely detectable in S1. Density fractionation of P3 revealed that 3H-PG E2 binding sites shared a similar sedimentation profile with plasma membranes and tubulovesicular markers. No or negative correlation was found with lysosomes, rough endoplasmic reticulum and mitochondria. We conclude that mucosal PG E2 receptors are predominantly located at the cell surface. This supports the view that prostanoids inhibit gastric secretion through membrane receptors, but gives no clue for intracellular "protective" working points.  相似文献   

10.
The ligand-less receptor HER2/neu (erbB-2) has been proposed as a prognostic marker of gastric cancer that correlates with poor clinical outcome, indicating that HER2 signals play an important role in gastric cancer progression. This study demonstrated that two major natural lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), induce rapid and transient phosphorylation of HER2 in two human gastric cancer cell lines, MKN28 and MKN74 cells. We also revealed that tyrosine phosphorylation of HER2 induced by both lysophospholipids was significantly attenuated by two inhibitors, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, AG1478, and a broad-spectrum matrix metalloproteinase inhibitor, GM6001. This suggests that the pathway of HER2 transactivation induced by these lysophospholipids is dependent on the proteolytically released EGFR ligands. Our results indicate that LPA and S1P act upstream of HER2 in gastric cancer cells, and thus may act as potent stimulators of gastric cancer.  相似文献   

11.
12.
13.
14.
Using indirect immuno-peroxidase staining technique, localization of immunoreactive follicle-stimulating hormone (IR-FSH) is demonstrated in the cytoplasm of the epithelial cells of normal human stomach. In view of their triangular shape and central nucleus and their predominance in the intermediate glands of the gastric mucosa, these cells are identified as parietal cells. The stromal tissue is devoid of staining reaction.  相似文献   

15.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible protein recently shown to be an important source of inflammatory PGE2. Here we have used mPGES-1 wild type, heterozygote, and null mice to assess the impact of reduction or absence mPGES-1 protein on the production of PGE2 and other prostaglandins in lipopolysaccharide (LPS)-treated macrophages and mice. Thioglycollate-elicited peritoneal macrophages with mPGES-1 deficiency were found to lose their ability to produce PGE2 upon LPS stimulation. Resident mPGES-1(-/-) peritoneal macrophages exhibited severely impaired PGE2-releasing activity but retained some LPS-inducible PGE2 production capacity. Both macrophage types showed a 50% decrease in PGE2 production with removal of one copy of the mPGES-1 gene. In vivo, mPGES-1 deletion abolished the LPS-stimulated production of PGE2 in spleen, kidney, and brain. Surprisingly, lack of mPGES-1 activity resulted in an 80-90% decrease in basal, cyclooxygenase-1 (COX-1)-dependent PGE2 production in stomach and spleen, and a 50% reduction in brain and kidney. Other prostaglandins (thromboxane B2, PGD2, PGF(2alpha), and 6-keto-PGF(1alpha)) were significantly elevated in stomachs of mPGES-1-null mice but not in other tissues. Examination of mRNA for several terminal prostaglandin synthases did not reveal changes in expression levels associated with mPGES-1 deficiency, indicating that gastric prostaglandin changes may be due to shunting of cyclooxygenase products to other terminal synthases. These data demonstrate for the first time a dual role for mPGES-1 in both inflammatory and COX-1-mediated PGE2 production and suggest an interdependence of prostanoid production with tissue-specific alterations of prostaglandin levels in the absence of mPGES-1.  相似文献   

16.
Human peripheral blood monocytes were found to spontaneously produce prostaglandin of the E series (PGE) in culture medium (0.5 ng to 3.0 ng/7.5 X 10(5) cells), and the addition of K562 tumor cells enhanced the production by five- to 15-fold after 18 hr of incubation. PGE2 (10(-6) M) inhibited the cytolytic activity of freshly isolated peripheral blood monocytes against K562 target cells by 50%. The PGE production was inhibited by inhibitors of cyclo-oxygenase (indomethacin, aspirin, and ETYA) when present during the incubation. However, pretreatment of monocytes with these cyclo-oxygenase inhibitors was ineffective in preventing PGE production. Kinetic experiments showed that appreciable stimulation of PGE production occurred only after 6 hr of co-culture. Other human tumor cell lines (HSB, SB, and CEM) enhanced PGE production upon co-culture with monocytes but to a lesser extent (twofold to threefold). Monocytes treated with 0.4% formaldehyde or heat (56 degrees C) were not capable of producing PGE when cultured alone or with K526 tumor cells. In contrast, formaldehyde-treated, but not heat-treated, K562 tumor cells were able to induce monocytes to produce PGE. By using a single cell conjugation assay, K562 tumor cells were found to bind equally well to treated or untreated monocytes. In contrast, the lytic activity of treated monocytes against K562 target cells was abolished. The presence of protein synthesis inhibitor, cycloheximide, was found to inhibit PGE production by monocytes cultured alone or with K562 tumor cells. Supernatants from K562 tumor cell cultures were also capable of inducing monocytes to produce PGE, and their effect on PGE production from monocytes was suppressed by cycloheximide. In addition, pretreatment of either K562 tumor cells or monocytes with an irreversible protein synthesis inhibitor, emetine, also suppressed the production of PGE upon co-culture with the untreated counterpart. The production of PGE by monocytes in response to exposure to tumor cells may represent a mechanism whereby tumor cells subvert host immune defense against them.  相似文献   

17.
18.
There is evidence that the overall effects of prostaglandin E(2) (PGE(2)) on human platelet function are the consequence of a balance between promotory effects of PGE(2) acting at the EP3 receptor and inhibitory effects acting at the EP4 receptor, with no role for the IP receptor. Another prostaglandin that has been reported to affect platelet function is prostaglandin E(1) (PGE(1)), however the receptors that mediate its actions on platelet function have not been fully defined. Here we have used measurements of platelet aggregation and P-selectin expression induced by the thromboxane A(2) mimetic U46619 to compare the effects of PGE(1) and PGE(2) on platelet function. Their effects on vasodilator-stimulated phosphoprotein (VASP) phosphorylation, as a marker of cAMP, were also determined. We also investigated the ability of the selective prostanoid receptor antagonists CAY10441 (IP antagonist), DG-041 (EP3 antagonist) and ONO-AE3-208 (EP4 antagonist) to modify the effects of the prostaglandins on platelet function. The results obtained confirm that PGE(2) interacts with EP3 and EP4 receptors, but not IP receptors. In contrast PGE(1) interacts with EP3 and IP receptors, but not EP4 receptors. In both cases the overall effects on platelet function reflect the balance between promotory and inhibitory effects at receptors that have opposite effects on adenylate cyclase.  相似文献   

19.
In some cancers cyclooxygenase (COX) inhibition appears to be anti-mitogenic and anti-angiogenic, but the actions of COX-derived prostaglandins in pancreatic cancer (PaCa) are unknown. In this study COX-2 was detected in three of six PaCa cell lines while COX-1 was identified in all cell lines. COX-2 expression correlated with basal and arachidonic acid (AA) stimulated PGE(2) production. PGE(2) production was inhibited by the COX-2 inhibitor nimesulide. In COX-2 expressing cells, exogenous AA and PGE(2) increased VEGF synthesis via the EP(2) receptor. Whereas PGE(2) stimulated intracellular cAMP formation in COX-2 positive and negative cells, 8-bromo cAMP stimulated VEGF production only in COX-2 expressing cells. Stimulating COX-2 expressing PaCa cell lines with AA enhanced migration of endothelial cells, an effect which was inhibited by a COX-2 inhibitor and EP(2) receptor antagonist. These data identify a subset of human PaCa cell lines that express functional COX-2 enzyme. PGE(2) generated by specific COX-2 activity increases VEGF secretion in human PaCa cells through an autocrine mechanism.  相似文献   

20.
In this study levels of prostaglandin E(2) (PGE(2)), tumour necrosis factor (TNF) and interleukin-1 (IL-1) alpha in medium from monocyte derived macrophages (MdM) infected with Chlamydia trachomatis (L(2)/434/Bu or K biovars). TNF and PGE(2) were found in both cases while IL-1 alpha was not detected. Both TNF and PGE(2) levels were higher in the medium of the MdM infected with K biovars. TNF reached maximum levels 24 h postinfection, and then declined, while PGE(2) levels increased continuously during the infection time up to 96 h post-infection. Addition of dexamethasone inhibited production of TNF and PGE(2). Inhibition of PGE(2) production by indomethacin resulted in increased production of TNF, while addition of PGE(2) caused partial inhibition of TNF production from infected MdM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号