首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracerebroventricular (icv) injection of methyldopa induced body temperature changes in the rabbits. The dose of 100 micrograms/kg did not produce any significant change on body temperature whereas 250 micrograms/kg of the drug induced hyperthermia. Higher dose of 500 micrograms/kg produced initial hypothermia which was followed by hyperthermia. On further increase of the dose to 1 mg/kg, consistent hypothermia was evident. Prazosin, a specific post-synaptic alpha 1 adrenoceptor blocker, induced hypothermia whereas piperoxan (presynaptic alpha 2 antagonist) produced hyperthermia. The pretreatment with prazosin, blocked the hyperthermic response of methyldopa. The initial hypothermia by 500 micrograms/kg of methyldopa was also potentiated. The pretreatment with piperoxan completely blocked the hypothermia but had no effect on hyperthermic response of methyldopa. Pretreatment of rabbits with both prazosin and piperoxan completely blocked the hypothermia as well as hyperthermic response of methyldopa. Thus it appeared that both presynaptic alpha 2 and postsynaptic alpha 1 adrenoceptors are involved in central thermoregulation in rabbits.  相似文献   

2.
This study was conducted to assess the influence of dopamine on thyrotropin secretion in patients with primary hypothyroidism before and after optimized L-thyroxin replacement therapy. Thyrotropin responses to dopamine infusion (4 microg/kg/min over 3 hours) and IV metoclopramide (10 mg bolus), a dopamine receptor blocker were studied in 25 consecutive patients with primary hypothyroidism before and after achieving stable euthyroid state and compared with 15 normal age-matched controls. Thyrotropin response to both dopamine infusion (decremental) and IV metoclopramide bolus (incremental) was greater in patients with primary hypothyroidism than that in the control subjects. Thyrotropin response was greater in women than in men. The magnitude of decremental thyrotropin response to dopamine infusion and the incremental response to IV metoclopramide bolus significantly correlated with the basal T3 and T4 levels. Thyrotropin response was blunted to dopamine infusion but not to metoclopramide at follow-up after six-month replacement with L-thyroxin, and both the responses were comparable in women and men in patient group. We conclude that modulation of dopaminergic system by dopamine or by dopamine receptor blocker has a greater influence on thyrotropin secretion in patients with primary hypothyroidism than euthyroid normal subjects.  相似文献   

3.
Effect of some selective agonists and antagonists of cholinergic M receptor subtypes on rectal temperature was investigated in rats at an ambient temperature of 25 degrees +/- 2 degrees C. Centrally administered acetylcholine (ACh) induced transient hypothermia, whereas the muscarinic M1 receptor agonists, arecholine (ip) and McN-A-343 (McN) (icv), induced sustained and dose-related hypothermia. However, the nonspecific muscarinic receptor agonist, oxotremorine, and physostigmine, induced hypothermia at a lower dose and hyperthermia, accompanied by tremors, at higher doses. The muscarinic M2 receptor agonist, carbachol (icv) also produced a dose-related dual effect, hyperthermia and hypothermia being induced by the lower and higher doses, respectively. The M1 receptor antagonists, scopolamine (ip) and pirenzepine (icv), induced hyperthermia, whereas the M2 receptor antagonists, gallamine (icv) and AF-DX 116 (AFDX) (ip), produced hypothermia. The hypothermic effects of ACh. arecholine, McN, physostigmine, oxotremorine and carbachol were attenuated by scopolamine and pirenzepine. However, although scopolamine also inhibited the hyperthermic and tremorogenic effects of the higher dose of oxotremorine, it had a synergistic effect with the hyperthermia-inducing higher dose of physostigmine. AFDX attenuated the hyperthermic effect of the lower dose of carbachol, indicating that it was M2 receptor-mediated. Hemicholinium, an ACh synthesis inhibitor, had a transient hypothermic effect followed by slight hyperthermia. However, it markedly antagonized the hypothermic effects of gallamine and AFDX, indicating that their effects were dependent upon the availability of neuronal ACh. The results indicate that cholinergic hypothermia is a function of central muscarinic M1 receptors, with the M2 receptors serving as automodulators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that local infusions of 1 mM N-nitro-L-arginine (NO-synthase inhibitors) in the rat striatum reduced, and infusions of 100 microM apomorphine (agonists of the dopamine receptors) increased the level of citrulline (a NO co-product) in extracellular space of this structure. The apomorphine-induced increase in citrulline extracellular levels in the striatum was completely prevented by infusions of N-nitro-L-arginine in this structure, and 10 microM raclopride (dopamine D2 receptor blocker), but not by infusions of 50 microM SCH-23390 (dopamine D1 receptor blocker). The data obtained suggest that the increase in citrulline extracellular levels in striatum resulted from local activation of NO-synthase, and this effect is mediated by D2 rather than D1 dopamine receptors.  相似文献   

5.
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.  相似文献   

6.
Exposure of rats to 1-15 Gy gamma radiation (60Co) induced hyperthermia, whereas 20-200 Gy induced hypothermia. Exposure either to the head or to the whole body to 10 Gy induced hyperthermia, while body-only exposure produced hypothermia. This observation indicates that radiation-induced fever is a result of a direct effect on the brain. The hyperthermia due to 10 Gy was significantly attenuated by the pre- or post-treatment with a cyclooxygenase inhibitor, indomethacin. Hyperthermia was also altered by the central administration of a mu-receptor antagonist naloxone but only at low doses of radiation. These findings suggest that radiation-induced hyperthermia may be mediated through the synthesis and release of prostaglandins in the brain and to a lesser extent to the release of endogenous opioid peptides. The release of histamine acting on H1 and H2 receptors may be involved in radiation-induced hypothermia, since both the H1 receptor antagonist, mepyramine, and H2 receptor antagonist, cimetidine, antagonized the hypothermia. The results of these studies suggest that the release of neurohumoral substances induced by exposure to ionizing radiation is dose dependent and has different consequences on physiological processes such as the regulation of body temperature. Furthermore, the antagonism of radiation-induced hyperthermia by indomethacin may have potential therapeutic implications in the treatment of fever resulting from accidental irradiations.  相似文献   

7.
The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.  相似文献   

8.
Behavioral sensitization to psychostimulants manifests as an increased locomotor response with repeated administration. Dopamine systems are accepted to play a fundamental role in sensitization, but the role of specific dopamine receptor subtypes has not been completely defined. This study used the combination of dopamine D2 receptor-deficient mice and a D1-like antagonist to examine dopamine D1 and D2 receptor involvement in acute and sensitized locomotor responses to methamphetamine. Absence of the dopamine D2 receptor resulted in attenuation of the acute stimulant effects of methamphetamine. Mutant and wild-type mice exhibited sensitization that lasted longer within the time period of the challenge test in the mutant animals. Pretreatment with the D1-like receptor antagonist SCH 23390 produced more potent reductions in the acute and sensitized locomotor responses to methamphetamine in D2 receptor-deficient mice than in wild-type mice; however, the expression of locomotor sensitization when challenged with methamphetamine alone was equivalently attenuated by previous treatment with SCH 23390. These data suggest that dopamine D2 receptors play a key role in the acute stimulant and sensitizing effects of methamphetamine and act in concert with D1-like receptors to influence the acquisition of methamphetamine-induced behavioral sensitization, traits that may influence continued methamphetamine use.  相似文献   

9.
1. A study has been made of the potency of a number of dopamine antagonists to inhibit dopamine-induced secretion from the cockroach salivary gland in vitro. 2. Chlorpromazine (0.5-5 microM), SCH23390 (10-100 microM), haloperidol (10-100 microM) and metoclopramide (2 mM) competitively inhibited the secretory response to dopamine. In contrast (+/-)sulpiride (1-100 microM) and domperidone (1-100 microM) had no effect on either basal or dopamine-induced secretion. 3. Apparent dissociation constants (KDapp) were obtained using a 'three point assay'. The rank order of potency (KDapp in parentheses) was as follows: chlorpromazine (0.2 microM) greater than SCH23390 (2.2 microM) greater than haloperidol (17.5 microM) much greater than metoclopramide (1.2 mM). 4. It is concluded that the receptor mediating dopamine-induced secretion in the cockroach salivary gland is similar to the D1/DA1 dopamine receptor and distinct from the D2/DA2 receptor found in mammalian systems.  相似文献   

10.
The purpose of this study was to examine the effects of 18β-glycyrrhetinic acid (GA), a novel naturally derived agent, in suppressing prolactin (PRL) hyperactivity and reducing antipsychotic-induced hyperprolactinemia (hyperPRL) and the underlying mechanisms in in vitro and in vivo models. GA treatment for 24 h inhibited PRL synthesis and secretion in MMQ cells and cultured pituitary cells in a dose-dependent fashion; but this effect was not reproduced in GH3 cells that lack the expression of functional dopamine D2 receptors. GA suppressed elevated PRL level and growth hormone, and normalized several sex hormones in a rat model of hyperPRL, produced by repeated injection of the dopamine blocker metoclopramide. GA also modulated the expression 5-HT1A and 5-HT2A receptors in both in vivo and in vitro models. These results indicate that GA is effective in suppressing PRL hyperactivity caused by the blockade of dopamine D2 receptors. This suppressive effect of GA may be related to its modulation of the serotonergic system. This study provides additional evidence in support of GA as an adjunct for the treatment of hyperPRL.  相似文献   

11.
The effects of peripherally administered serotonin (5-HT) on the rectal temperature were investigated. 5-HT i.p. induced a dose-dependent hypothermia in mice. The hypothermic effects of 5-HT were strongly antagonized by the 5-HT1 and 5-HT2 receptor antagonist methysergide and the 5-HT2 receptor antagonist ketanserin. However, the 5-HT1 receptor antagonist pindolol and the 5-HT3 receptor antagonist ICS 205-930 were without effect. In addition, the peripheral 5-HT2 receptor antagonist xylamidine strongly reduced 5-HT-induced hypothermia. These results indicate that the activation of the peripheral 5-HT2 receptors induces hypothermia, although the central 5-HT2 receptors have been suggested to relate to hyperthermia.  相似文献   

12.
We have cloned two novel Caenorhabditis elegans dopamine receptors, DOP-3 and DOP-4. DOP-3 shows high sequence homology with other D2-like dopamine receptors. As a result of alternative splicing, a truncated splice variant of DOP-3, DOP-3nf, was produced. Because of the in-frame insertion of a stop codon in the third intracellular loop, DOP-3nf lacks the sixth and seventh transmembrane domains that are found in the full-length DOP-3 receptor. Reporter gene assay showed that DOP-3 attenuates forskolin-stimulated cAMP formation in response to dopamine stimulation, whereas DOP-3nf does not. When DOP-3 was coexpressed with DOP-3nf, the ability to inhibit forskolin-stimulated cAMP formation was reduced. DOP-4 shows high sequence homology with D1-like dopamine receptors unique to invertebrates, which are distinct from mammalian D1-like dopamine receptors. Reporter gene assay showed that DOP-4 stimulates cAMP accumulation in response to dopamine stimulation. These two receptors provide new opportunities to understand dopaminergic signaling at the molecular level.  相似文献   

13.
Dopamine receptors in human parathyroid were studied in vitro using ligand binding techniques. With 3H-piflutixol as ligand, binding characteristic of the dopamine D1 receptor was observed. Administration of apomorphine, flupenthixol or metoclopramide to normal controls or acute schizophrenic patients at doses producing significant alterations in serum prolactin concentrations did not alter serum parathyroid hormone (PTH) concentrations. Whilst D1 binding sites are present in human parathyroid, the measurement of PTH after administration of dopaminergic drugs is unlikely to provide a test of D1 receptor function in man.  相似文献   

14.
Preincubation of D384 cells, derived from the human astrocytoma cell line G-CCM, with dopamine resulted in a time-dependent attenuation of cyclic AMP responsiveness to subsequent dopamine stimulation. This effect was agonist specific because the prostaglandin E1 (PGE1) stimulation of cyclic AMP of similarly treated cells remained unchanged. The attenuation by dopamine was concentration dependent with a maximum observed at 100 microM. A comparison of dopamine concentration-response curves of control and dopamine-preincubated cells revealed no change in the Ka apparent value, but a marked attenuation of the maximal response. Preincubation of cells with dopamine in the presence of D1 but not D2 selective antagonists partially prevented the observed attenuation. Attenuations in dopamine responsiveness were also obtained when D384 cells were preincubated with D1 but not D2 receptor agonists. The level of attenuation attained related to agonist efficiency in stimulating cyclic AMP: SKF38393 less than 3,4-dihydroxynomifensine less than fenoldopam less than 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene = dopamine. However, increasing the efficiency of 3,4-dihydroxynomifensine stimulation of cyclic AMP, using the synergistic effect of adding a low concentration of forskolin, produced no further change in the attenuation of the subsequent response to dopamine. Thus, the D1 dopamine receptors expressed by D384 cells undergo homologous desensitization. Uncoupling of the D1 dopamine receptor appears to be independent of cyclic AMP formation, analogous to a mechanism proposed for the beta-adrenergic receptor.  相似文献   

15.
Interactions between endogenous dopamine, glutamate, GABA, and taurine were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective dopamine uptake inhibitor nomifensine (NMF) were used to increase the endogenous extracellular dopamine. NMF produced a dose-related increase in extracellular dopamine and also increased extracellular concentrations of glutamate, GABA, and taurine. Extracellular increases of dopamine were significantly correlated with extracellular increases of glutamate and GABA, but not taurine. To investigate whether the increased extracelular dopamine produced by NMF was responsible for the concomitant increase of glutamate and GABA, D1, and D2 receptor antagonists were used. Dopamine receptor antagonists D1 (SCH23390) and D2 (sulpiride) significantly attenuated the increases of glutamate and GABA produced by NMF. These data suggest that endogenous dopamine, through both D1 and D2 dopamine receptors, plays a role in releasing glutamate and GABA in striatum of the freely moving rat.  相似文献   

16.
Dopamine receptor subtype imbalance in schizophrenia   总被引:3,自引:0,他引:3  
We have investigated the radioligand binding properties of D1 and D2 dopamine receptors in postmortem brains from schizophrenic patients. Consistent with previous reports, the schizophrenic population demonstrated a significant 56% increase in D2 dopamine receptor density. Importantly, the D1 dopamine receptor density was significantly reduced by 43%. These alterations in dopamine receptor densities resulted in a highly significant difference in the ratio of D2/D1 dopamine receptors between schizophrenic patients and controls. A correlation between D1 dopamine receptor density and age was apparent in the schizophrenic patients: D1 dopamine receptor density decreased markedly with age and the linear regressions of D1 dopamine receptor density versus age in both the controls and schizophrenic patients had similar slopes. These results may have clinical implications for the treatment of schizophrenia and tardive dyskinesia.  相似文献   

17.
The present study was designed to compare the putative differential behavioral consequences of treatment with SCH23390 (a selective dopamine D1 receptor blocker) and raclopride (a selective dopamine D2 receptor blocker) by employing a run-climb-run (RCR) behavioral task of different lengths. Rats were trained to traverse an uncovered floor alleyway (150 cm), climb a vertical rope (70 or 130 cm), and run across an upper board (100 cm) to access water for the reinforcement. At doses of 0.05, 0.10 and 0.15 mg/kg administered intraperitoneally 60 min before the behavioral session, both SCH23390 and raclopride significantly increased the total time to complete the tasks in a dose-related fashion. Microstructural analysis on the RCR behavioral performance revealed that the most apparent impairment induced by either drug was observed as the subject shifted motion from the end of the floor alleyway to the rope when hopping or to initiate climbing. However, the motion shift from climbing to running on the upper board was significantly impaired by raclopride, but not by SCH23390. Surprisingly, neither SCH23390 nor raclopride affected the climbing response itself. Running responses on the floor alleyway board were significantly disrupted by raclopride, whereas those on the upper board were significantly disrupted by SCH23390. Deficits induced by both drugs were more profound for the longer compared to the shorter rope, and were most notably shown at the transition area from running to climbing. These data indicate that both dopamine D1 and D2 receptors are involved in the RCR behavior performance. The results also suggest that the cost of motoric demand for behavioral performance is important for evaluating of the effects of drugs blocking dopamine receptors.  相似文献   

18.
L J Forman 《Life sciences》1999,64(21):1877-1887
Inhibition of nitric oxide synthase (NOS) activity results in opioid-mediated supraspinal analgesia in the rat, as indicated by increased reaction time in the hot plate test. It is documented that a relationship exists between NMDA receptor activation and the activity of NOS. The present investigation sought to determine if inactivation of the NMDA receptor produced antinociception of supraspinal origin, as was observed in response to inhibition of NOS, and if this response was mediated by brain opioids, by activation of receptors for the neurotransmitter, dopamine, or both. Administration of MK-801, a non-competitive antagonist of the NMDA receptor, produced significant antinociception as measured by reaction time in the hot plate test of analgesia. Antinociception resulting from treatment with MK-801 appeared to be mediated by brain opioids, as indicated by the ability of the opioid antagonist, naloxone, to partially reverse the effect of MK-801 administration. This analgesic response was also partially diminished by administration of the dopamine D1 receptor antagonist, SCH 23390 and the dopamine D2 receptor antagonist, sulpiride. The analgesia resulting from NMDA receptor antagonism was found to be only partially attributable to dopamine and brain opioids, since co-administration of naloxone and SCH 23390 or naloxone and sulpiride, were unable to completely reverse the antinociceptive response to MK-801. The present findings suggest that inhibition of NMDA receptor activity produces supraspinal analgesia. Furthermore, it appears that antinociception induced by blockade of the NMDA receptor results, at least in part, from activation of endogenous brain opioids and stimulation of D1 and D2 subtypes of the dopamine receptor.  相似文献   

19.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

20.
In the retinas of lower vertebrates, retinal photoreceptors and melanin pigment granules of the retinal pigment epithelium (RPE) undergo characteristic movements in response to changes in light intensity and to signals from an endogenous circadian clock. To identify agents responsible for mediating light and/or circadian regulation of these retinomotor movements, we investigated the effects of hormones and neurotransmitters on cone, rod, and RPE movements in the green sunfish, Lepomis cyanellus. We report here that 3,4-dihydroxyphenylethylamine (dopamine) mimics the effect of light by inducing light-adaptive retinomotor movements in all three cell types. In isolated dark-cultured retinas, dopamine induced light-adaptive cone contraction with a half-maximal effect at 10(-8) M. This effect of dopamine was inhibited by antagonists with a potency order characteristic of D2 receptor mediation. The dopamine uptake blocker benztropine also induced light-adaptive cone contraction in isolated dark-cultured retinas, suggesting that there is continuous dopamine release in the dark but that concomitant uptake normally prevents activation of cone contraction. That dopamine plays a role in light regulation of cone movement is further suggested by the observation that light-induced cone contraction was partially inhibited by sulpiride, a selective D2 dopamine antagonist, or by Co2+, a blocker of synaptic transmission. Sulpiride also promoted dark-adaptive cone elongation in isolated light-adapted retinas, suggesting that continuous dopamine action is required in the light to maintain the light-adapted cone position. Dopamine can act directly on D2 receptors located on rod and cone inner/outer segments: dopamine induced light-adaptive retinomotor movements in isolated distal fragments of dark-adapted photoreceptors cultured in the dark. Together our results indicate that dopamine induces light-adaptive retinomotor movements in cones, rods, and RPE cells by activating D2 receptors. We suggest that, in vivo, dopamine plays a role in both light and circadian regulation of retinomotor movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号