首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragile X mental retardation syndrome is a repeat expansion disease caused by expansion of a CGG·CCG-repeat tract in the 5′ UTR of the FMR1 gene. In humans, small expansions occur more frequently on paternal transmission while large expansions are exclusively maternal in origin. It has been suggested that expansion is the result of aberrant DNA replication, repair or recombination. To distinguish amongst these possibilities we crossed mice containing 120 CGG·CCG-repeats in the 5′ UTR of the mouse Fmr1 gene to mice with mutations in ATR, a protein important in the cellular response to stalled replication forks and bulky DNA lesions. We show here that ATR heterozygosity results in increased expansion rates of maternally, but not paternally, transmitted alleles. In addition, age-related somatic expansions occurred in mice of both genders that were not seen in ATR wild-type animals. Some ATR-sensitive expansion occurs in postmitotic cells including haploid gametes suggesting that aberrant DNA repair is responsible. Our data suggest that two mechanisms of repeat expansion exist that may explain the small and large expansions seen in humans. In addition, our data provide an explanation for the maternal bias of large expansions in humans and the lower incidence of these expansions in mice.  相似文献   

2.
The CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1) exhibits remarkable instability upon transmission from mothers with premutation alleles. A collaboration of 13 laboratories in eight countries was established to examine four issues concerning FMR1 CGG-repeat instability among females with premutation (approximately 55-200 repeats) and intermediate (approximately 46-60 repeats) alleles. Our central findings were as follows: (1) The smallest premutation alleles that expanded to a full mutation (>200 repeats) in one generation contained 59 repeats; sequence analysis of the 59-repeat alleles from these two females revealed no AGG interruptions within the FMR1 CGG repeat. (2) When we corrected for ascertainment and recalculated the risks of expansion to a full mutation, we found that the risks for premutation alleles with <100 repeats were lower than those previously published. (3) When we examined the possible influence of sex of offspring on transmission of a full mutation-by analysis of 567 prenatal fragile X studies of 448 mothers with premutation and full-mutation alleles-we found no significant differences in the proportion of full-mutation alleles in male or female fetuses. (4) When we examined 136 transmissions of intermediate alleles from 92 mothers with no family history of fragile X, we found that, in contrast to the instability observed in families with fragile X, most (99/136 [72.8%]) transmissions of intermediate alleles were stable. The unstable transmissions (37/136 [27.2%]) in these families included both expansions and contractions in repeat size. The instability increased with the larger intermediate alleles (19% for 49-54 repeats, 30.9% for 55-59, and 80% for 60-65 repeats). These studies should allow improved risk assessments for genetic counseling of women with premutation or intermediate-size alleles.  相似文献   

3.
Fragile X syndrome (FRAXA) is characterized at the molecular level by an expansion of a naturally occurring 5′-(CGG)n-3′ repeat in the promoter and 5′-untranslated region (5′-UTR) of the fragile X mental retardation (FMR1) gene on human chromosome Xq27.3. When expanded, this region is usually hypermethylated. Inactivation of the FMR1 promoter and absence of the FMR1 protein are the likely cause of the syndrome. By using the bisulfite protocol of the genomic sequencing method, we have determined the methylation patterns in this region on single chromosomes of healthy individuals and of selected premutation carriers and FRAXA patients. In control experiments with unmethylated or M-SssI-premethylated DNAs, this protocol has been ascertained to reliably detect all cytidines or 5-methylcytidines as unmethylated or methylated nucleotides, respectively. Analyses of the DNA from FRAXA patients reveal considerable variability in the lengths of the 5′-(CGG)n-3′ repeats and in the levels of methylation in the repeat and the 5′-UTR. In one patient (OEl) with high repeat length heterogeneity (n = 15 to >200), shorter repeats (n = 20–80) were methylated or unmethylated, longer repeats (n = 100–150) were often completely methylated, but one repeat with n = 160 proved to be completely unmethylated. This type of methylation mosaicism was observed in several FRAXA patients. In healthy females, methylated 5′-CG-3′ sequences were found in some repeats and 5′-UTRs, as expected for the sequences from one of the X chromosomes. The natural FMR1 promoter is methylation sensitive, as demonstrated by the loss of activity in transfection experiments using the unmethylated or M-SssI-premethylated FMR1 promoter fused to the luciferase gene as an activity indicator.  相似文献   

4.
The inherent replicative mode of transposition endows retrotransposons with considerable advantages as genetic tools in plant genome analysis. Here we present a high-throughput sequence-specific amplification polymorphism (S-SAP) method based on copia-like retrotransposons to fulfill the increasing desire of screening large numbers of samples in plants. Classic approach for digestion, ligation and pre-amplification was combined with optimized fluorescent multiplex PCR for simultaneously selective amplifying S-SAP fragments, and multiple S-SAPs were subsequently detected by capillary electrophoresis using ABI PRISM 3700 capillary instruments. Comparisons of results from multiplex PCR with simplex PCR, and from capillary electrophoresis with slab-gel electrophoresis demonstrated that this method is an efficient, economical, and accurate means for high-throughput and large-scale genotyping retrotransposon variation in plants.  相似文献   

5.
The fragile X phenotype has been found, in the majority of cases, to be due to the expansion of a CGG repeat in the 5'-UTR region of the FMR-1 gene, accompanied by methylation of the adjacent CpG island and inactivation of the FMR-1 gene. Although several important aspects of the genetics of fragile X have been resolved, it remains to be elucidated at which stage in development the transition from the premutation to the full mutation occurs. We present two families in which discordance between two sets of MZ twins illustrates two important genetic points. In one family, two affected MZ brothers differed in the number of CGG repeats, demonstrating in vivo mitotic instability of this CGG repeat and suggesting that the transition to the full mutation occurred postzygotically. In the second family, two MZ sisters had the same number of repeats, but only one was mentally retarded. When the methylation status of the FMR-1 CpG island was studied, we found that the majority of normal chromosomes had been inactivated in the affected twin, thus leading to the expression of the fragile X phenotype.  相似文献   

6.
7.
Expanded trinucleotide repeats underlie a growing number of human diseases. The human FMR1 (CGG)(n) array can exhibit genetic instability characterized by progressive expansion over several generations leading to gene silencing and the development of the fragile X syndrome. While expansion is dependent upon the length of uninterrupted (CGG)(n), instability occurs in a limited germ line and early developmental window, suggesting that lineage-specific expression of other factors determines the cellular environment permissive for expansion. To identify these factors, we have established normal- and premutation-length human FMR1 (CGG)(n) arrays in the yeast Saccharomyces cerevisiae and assessed the frequency of length changes greater than 5 triplets in cells deficient in various DNA repair and replication functions. In contrast to previous studies with Escherichia coli, we observed a low frequency of orientation-dependent large expansions in arrays carrying long uninterrupted (CGG)(n) arrays in a wild-type background. This frequency was unaffected by deletion of several DNA mismatch repair genes or deletion of the EXO1 and DIN7 genes and was not enhanced through meiosis in a wild-type background. Array contraction occurred in an orientation-dependent manner in most mutant backgrounds, but loss of the Sgs1p resulted in a generalized increase in array stability in both orientations. In contrast, FMR1 arrays had a 10-fold-elevated frequency of expansion in a rad27 background, providing evidence for a role in lagging-strand Okazaki fragment processing in (CGG)(n) triplet repeat expansion.  相似文献   

8.
Hairpin and tetrahelical structures of a d(CGG)(n) sequence in the FMR1 gene have been implicated in its expansion in fragile X syndrome. The identification of tetraplex d(CGG)(n) destabilizing proteins (Fry, M., and Loeb, L. A.(1999) J. Biol. Chem. 274, 12797-12803; Weisman-Shomer, P., Naot, Y., and Fry, M. (2000) J. Biol. Chem. 275, 2231-2238) suggested that proteins might modulate d(CGG)(n) folding and aggregation. We assayed human TK-6 lymphoblastoid cell extracts for d(CGG)(8) oligomer binding proteins. The principal binding protein was identified as Ku antigen by its partial amino acid sequence and antigenicity. The purified 88/75-kDa heterodimeric Ku bound with similar affinities (K(d) approximately 1. 8-10.2 x 10(-9) mol/liter) to double-stranded d(CGG)(8).d(CCG)(8), hairpin d(CGG)(8), single-stranded d(CII)(8), or tetraplex structures of telomeric or IgG switch region sequences. However, Ku associated more tightly with bimolecular G'2 tetraplex d(CGG)(8) (K(d) approximately 0.35 x 10(-9) mol/liter). Binding to Ku protected G'2 d(CGG)(8) against nuclease digestion and impeded its unwinding by the tetraplex destabilizing protein qTBP42. Stabilization of d(CGG)(n) tetraplex domains in FMR1 by Ku or other proteins might promote d(CGG) expansion and FMR1 silencing.  相似文献   

9.
The 5′ untranslated region of the FMR1 gene which normally includes 4–55 d(CGG) repeats expands to > 55–200 repeats in carriers of fragile X syndrome premutation. Although the levels of premutation FMR1 mRNA in carrier cells are 5–10-fold higher than normal, the amount of the product FMR protein is unchanged or reduced. We demonstrated previously that premutation r(CGG)n tracts formed quadruplex structures that impeded translation and lowered the efficiency of protein synthesis. Normal translation could be restored in vivo by the quadruplex r(CGG)n destabilizing action of CBF-A and hnRNP A2 proteins. Here we report that the quadruplex-interacting cationic porphyrin TMPyP4 by itself and in cooperation with CBF-A or hnRNP A2 also unfolded quadruplex r(CGG)n and increased the efficiency of translation of 5′-(CGG)99 containing reporter firefly (FL) mRNA. TMPyP4 destabilized in vitro a (CGG)33 intramolecular quadruplex structure and enhanced the translation of 5′-(CGG)99-FL mRNA in a rabbit reticulocyte lysate and in HEK293 cells. The efficiency of translation of (CGG)99-FL mRNA was additively increased in cells exposed to TMPyP4 together with CBF-A. Whereas low doses of TMPyP4, CBF-A or hnRNP A2 by themselves did not affect the in vivo utilization of (CGG)99-FL mRNA, introduction of TMPyP4 together with either protein synergistically augmented its translation efficiency.  相似文献   

10.
11.
Fragile X syndrome is caused by expansion of a d(CGG) trinucleotide repeat sequence in the 5′ untranslated region of the first exon of the FMR1 gene. Repeat expansion is thought to be instigated by formation of d(CGG)n secondary structures. Stable FMR1 d(CGG)n runs in normal individuals consist of 6–52 d(CGG) repeats that are interrupted every 9–11 triplets by a single d(AGG) trinucleotide. By contrast, individuals having fragile X syndrome premutation or full mutation present >54–200 or >200–2000 monotonous d(CGG) repeats, respectively. Here we show that the presence of interspersed d(AGG) triplets diminished in vitro formation of bimolecular tetrahelical structures of d(CGG)18 oligomers. Tetraplex structures formed by d(CGG)n oligomers containing d(AGG) interspersions had lower thermal stability. In addition, tetraplex structures of d(CGG)18 oligomers interspersed by d(AGG) triplets were unwound by human Werner syndrome DNA helicase at rates and to an extent that exceeded the unwinding of tetraplex form consisting of monotonous d(CGG)18. Diminished formation and stability of tetraplex structures of d(AGG)-containing FMR1 d(CGG)2–50 tracts might restrict their expansion in normal individuals.  相似文献   

12.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

13.
14.
15.
The Fc glycosylation of therapeutic antibodies is crucial for their effector functions and their behavior in pharmacokinetics and pharmacodynamics. To monitor the Fc glycosylation in bioprocess development and characterization, high-throughput techniques for glycosylation analysis are needed. Here, we describe the development of a largely automated high-throughput glycosylation profiling method with multiplexing capillary-gel-electrophoresis (CGE) with laser induced fluorescence (LIF) detection using a DNA analyzer. After PNGaseF digestion, the released glycans were labeled with 9-aminopyrene-1,3,6-trisulfonic acid (APTS) in 96-well plates, which was followed by the simultaneous analysis of up to 48 samples. The peak assignment was conducted by HILIC-UPLC-MS/MS of the APTS-labeled glycans combined with peak fractionation and subsequent CGE-LIF analysis of the MS-characterized fractions. Quantitative data evaluation of the various IgG glycans was performed automatically using an in-house developed software solution. The excellent method accuracy and repeatability of the test system was verified by comparison with two UPLC-based methods for glycan analysis. Finally, the practical value of the developed method was demonstrated by analyzing the antibody glycosylation profiles from fermentation broths after small scale protein A purification.  相似文献   

16.
Unstable premutation alleles in fragile X contain CGG repeats ranging from 34 to about 200. To study the mechanism of formation and the behavior of dynamic mutations, we constructed and cloned 88 trinucleotide repeats including 43 uninterrupted CGGs and injected them into mouse fertilized oocytes. We analyzed 342 transgenic animals obtained from 6 different founders after one to four generations, and found that the repeats remained stable regardless of the sex of the transmitting mouse. Therefore, we may need to consider factors other than trinucleotide repeat length alone to explain CGG instability and create an animal model. Received: 17 January 1997 / Accepted: 14 April 1997  相似文献   

17.
Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks.In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification.  相似文献   

18.
19.
Amrane S  Mergny JL 《Biochimie》2006,88(9):1125-1134
Trinucleotide repeats are involved in a number of debilitating diseases such as fragile-X syndrome and myotonic dystrophy. Eighteen to 75 base-long (CCG)(n) and (CGG)(n) oligodeoxynucleotides were analysed using a combination of biophysical (UV-absorbance, differential scanning calorimetry) and biochemical methods (non-denaturing gel electrophoresis, enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature which was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed a length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent experiments (calorimetry), as recently shown for CTG and CAG trinucleotides (Nucleic Acids Res. 33 (2005) 4065). Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots. Such behaviour is analysed in the framework of an intramolecular "branched" or "broken" hairpin model, in which long oligomers do not fold into a simple long hairpin-stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. These results suggest that this observation may be extended to various trinucleotide repeats-containing sequences.  相似文献   

20.
《MABS-AUSTIN》2013,5(1):185-196
The Fc glycosylation of therapeutic antibodies is crucial for their effector functions and their behavior in pharmacokinetics and pharmacodynamics. To monitor the Fc glycosylation in bioprocess development and characterization, high-throughput techniques for glycosylation analysis are needed. Here, we describe the development of a largely automated high-throughput glycosylation profiling method with multiplexing capillary-gel-electrophoresis (CGE) with laser induced fluorescence (LIF) detection using a DNA analyzer. After PNGaseF digestion, the released glycans were labeled with 9-aminopyrene-1,3,6-trisulfonic acid (APTS) in 96-well plates, which was followed by the simultaneous analysis of up to 48 samples. The peak assignment was conducted by HILIC-UPLC-MS/MS of the APTS-labeled glycans combined with peak fractionation and subsequent CGE-LIF analysis of the MS-characterized fractions. Quantitative data evaluation of the various IgG glycans was performed automatically using an in-house developed software solution. The excellent method accuracy and repeatability of the test system was verified by comparison with two UPLC-based methods for glycan analysis. Finally, the practical value of the developed method was demonstrated by analyzing the antibody glycosylation profiles from fermentation broths after small scale protein A purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号