首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The focal adhesion protein vinculin contributes to cell attachment and spreading through strengthening of mechanical interactions between cell cytoskeletal proteins and surface membrane glycoproteins. To investigate whether vinculin proteolysis plays a role in the influence vinculin exerts on the cytoskeleton, we studied the fate of vinculin in activated and aggregating platelets by Western blot analysis of the platelet lysate and the cytoskeletal fractions of differentially activated platelets. Vinculin was proteolyzed into at least three fragments (the major one being approximately 95 kDa) within 5 min of platelet activation with thrombin or calcium ionophore. The 95 kDa vinculin fragment shifted cellular compartments from the membrane skeletal fraction to the cortical cytoskeletal fraction of lysed platelets in a platelet aggregation-dependent manner. Vinculin cleavage was inhibited by calpeptin and E64d, indicating that the enzyme responsible for vinculin proteolysis is calpain. These calpain inhibitors also inhibited the translocation of full-length vinculin to the cytoskeleton. We conclude that cleavage of vinculin and association of vinculin cleavage fragment(s) with the platelet cytoskeleton is an activation response that may be important in the cytoskeletal remodeling of aggregating platelets.  相似文献   

2.
Vinculin, a 130-kDa protein discovered in chicken gizzard smooth-muscle cells and subsequently also described in platelets, is believed to be involved in membrane-cytoskeleton interactions. In this study we investigated vinculin distribution in human blood platelets. Two skeletal fractions and a remaining cytosolic fraction were prepared with a recently described Triton X-100 lysis buffer causing minimal post-lysis breakdown by proteolysis. The presence of vinculin was demonstrated in the membrane skeleton and cytosol of resting and thrombin-activated human platelets. Upon thrombin stimulation vinculin also appeared in the cytoskeleton. this cytoskeletal incorporation was completed during the early stages of platelet aggregation and secretion, when the uptake of myosin, actin-binding protein and talin was still not maximal. We conclude therefore, that vinculin may play an important role in the structural (re)organisation of the human platelet cytoskeleton upon platelet activation.  相似文献   

3.
A vinculin-like protein was identified in chicken as well as in bovine platelets by ELISA competitive binding assay using antibodies against vinculin from chicken gizzard. By a modified procedure (J. Biol. Chem. (1980) 255, 1194–1199) we succeeded in isolating bovine platelet vinculin to apparent homogeneity. The structural identity of platelet and chicken gizzard vinculin was demonstrated by circular dichroism analysis. It was also shown that platelet vinculin induces a significant decrease in the low shear viscosity of F-actin. Vinculin, in all probability, plays an important role in the organization of actin filaments in platelets, especially in the linkages of microfilaments to the membrane.  相似文献   

4.
Vinculin is a cytoskeletal protein believed to be involved in linking microfilaments to the cell membrane. It is a substrate for the Ca(2+)- and phospholipid-dependent protein kinase C. We show here that when human platelets attach and spread on a solid surface, the alpha isoforms of vinculin become phosphorylated at serine and/or threonine residues. Phosphorylation is dependent on adhesion to a surface, since suspended, unattached platelets can produce filopodia but no phosphorylation of vinculin. Phosphorylation is also dependent on actin polymerization, as it does not occur when platelets had been pretreated with cytochalasin B. Most likely, protein kinase C is responsible for the phosphorylation of vinculin, since phosphorylation also occurs when platelets are treated with a phorbol ester, which activates protein kinase C, and is blocked by treatment with a staurosporine derivative which inhibits this enzyme. These results suggest that phosphorylation plays a role in anchoring vinculin at sites of microfilament-membrane interaction.  相似文献   

5.
《The Journal of cell biology》1993,121(6):1329-1342
Activation of blood platelets triggers a series of responses leading to the formation and retraction of blood clots. Among these responses is the establishment of integrin-mediated transmembrane connections between extracellular matrix components and the actin cytoskeleton of the platelet. Here we report that a specific subpopulation of the major platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa) (also referred to as alpha IIb beta 3 integrin), becomes incorporated into the detergent- insoluble actin cytoskeleton of platelets during the platelet activation response. The cytoskeletal association of GPIIb-IIIa is independent of platelet aggregation and fibrin sedimentation and is sensitive to cytochalasin D treatment. As determined by Western immunoblot analysis, approximately 22% of the total cellular GPIIb-IIIa becomes associated with the actin cytoskeleton upon thrombin activation in a manner that is independent of the detection of talin, alpha- actinin, or vinculin in the complex. We found that the cytoskeleton- associated GPIIb-IIIa is derived from an intracellular source since it is not available for lactoperoxidase-catalyzed radioiodination before platelet activation. Two intracellular sources of GPIIb-IIIa are present in resting platelets: GPIIb-IIIa associated with the alpha- granule secretory compartment as well as surface-inaccessible domains of the surface-connected canalicular system. Interestingly, alpha- granule secretion, which occurs in thrombin-activated platelets and results in the translocation of intracellular GPIIb-IIIa to the plasma membrane, appears to be required for the cytoskeleton incorporation of GPIIb-IIIa that we observe. Collectively, our data provide evidence that a subpopulation of GPIIb-IIIa derived from an intracellular source is selectively linked to the actin cytoskeleton of platelets upon thrombin activation in the absence of platelet aggregation.  相似文献   

6.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

7.
Vinculin是一种细胞骨架蛋白兼粘着斑组成蛋白,主要分布于细胞 细胞连接处及细胞 细胞外基质(extracellular matrix, ECM)粘着斑部位.Vinculin通过与多种粘着斑蛋白、细胞骨架蛋白及细胞骨架F-肌动蛋白相结合并相互作用,参与细胞的力 化学信号转导,在细胞粘附、伸展、运动、增殖、存活等过程中起重要作用.本文结合本课题组研究工作,在介绍vinculin分子结构的基础上,对其在细胞力 化学信号转导中的作用做一综述.  相似文献   

8.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.  相似文献   

9.
Vinculin in relation to stress fibers in spread platelets.   总被引:4,自引:0,他引:4  
To investigate the function of vinculin in blood platelets, we studied its localization in relation to other cytoskeletal proteins as well as its state of phosphorylation in platelets allowed to spread on fibrinogen-coated surfaces. By 5 minutes after loading the platelets onto the surfaces the 47 and 20 kDa polypeptides became phosphorylated, indicating activation. By 30 minutes, platelets formed small, typical bundles of fibers which stained brilliantly with rhodamine phalloidin. Myosin and tropomyosin, detected with specific antibodies, were localized in periodic arrays along these bundles. By indirect immunofluorescence, a discrete patch of vinculin was observed at each end of every actin-containing bundle. Vinculin phosphorylation was not detected in immunoprecipitates protected against phosphatases. Interference reflection images showed that regions of close binding to the substratum (adhesion plaques) closely matched the vinculin staining sites. Talin appeared diffusely localized. It could be shown to be present in the plaques when platelets were stabilized with ZnCl2 by the method of Geiger and then sonicated to remove some of the surface membrane. Localizations of vinculin and myosin were unaltered by this treatment. Talin phosphorylation or proteolysis could not account for vinculin translocation. We conclude that platelets, in response to an appropriate physiological surface, form typical actin bundles with vinculin at the termination of each bundle, in close relation to adhesion plaques. The signal for this translocation does not appear to depend on phosphorylation of vinculin or on phosphorylation or proteolysis of talin. Our findings support the conclusion that in platelets, as in nucleated cells, vinculin serves as at least part of the connection between bundled actin fibers and the extracellular matrix. Such a connection seems required for platelets' known ability to exert tension on surfaces.  相似文献   

10.
Platelet vinculin: a substrate of activated factor XIII   总被引:1,自引:0,他引:1  
In addition to plasma, Factor XIII of blood coagulation (FXIII) is also present in the cytosol of platelets, monocytes and macrophages. However, its intracellular function has not yet been revealed. Activated Factor XIII (FXIIIa) is a transglutaminase (protein-glutamine: amine gamma-glutamyltransferase, EC 2.3.2.13) of highly restricted substrate specificity with only a few known protein substrates. In this report, we showed that FXIIIa can link dansylcadaverine, radiolabelled histamine and putrescine to vinculin. Quantitative determinations revealed that in the vinculin molecule a single glutamine residue can serve as acyl donor for the incorporation of small-molecular-weight amines. Vinculin could not be crosslinked to another vinculin molecule. It could be covalently bound, however, to fibrinogen, which indicates that the acyl donor glutamine residue can be engaged in an epsilon-(gamma-glutamyl)lysyl crosslink formation. Since it has been shown that platelet actin and myosin, two main components of cytoskeleton, are also substrates for FXIIIa, and that vinculin is associated to the cytoskeleton during platelet activation, the involvement of FXIII in the stabilization of cytoskeleton at certain phases of cellular function is a likely possibility.  相似文献   

11.
The cytoskeletal protein vinculin, a putative actin--plasma-membrane linker, has been shown by hydrophobic photo-labeling to interact in vitro directly with bilayers of acidic phospholipids [Niggli et al. (1986) J. Biol. Chem. 261, 6912-6918]. In order to demonstrate that such an interaction occurs also in intact cells, chicken embryo fibroblasts were incubated for 2 h with a 3H-labeled photoactivatable fatty acid, 11-(4-[3-(trifluoromethyl)-diazirinyl]phenyl)-[2-3H]undecanoic acid. This resulted in biosynthetic incorporation into cellular lipids of a fraction of the fatty acid added. Following photolysis, vinculin was immunoprecipitated from different subcellular fractions using a specific polyclonal anti-vinculin antibody. The protein was recovered from both the cytosolic and the crude membrane fraction. Vinculin from both fractions incorporated label, but the membrane-associated population was at least eight times more strongly photolabeled than the cytosolic protein. Moreover, photolysis increased only labeling of the membrane-bound but not of the cytosolic protein. These results suggest that the direct interaction of vinculin with the hydrophobic core of the phospholipid layer observed in vitro may also be relevant in intact cells, and may be involved in its function as a linker protein.  相似文献   

12.
Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus) uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258) of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK) and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.  相似文献   

13.
The cytoskeletal protein vinculin is acylated by myristic acid   总被引:4,自引:0,他引:4  
In non-muscle cells the mechanism by which microfilament bundles interact with the plasma membrane is unclear. Vinculin, a 130 kDa protein found in adhesion plaques, has been postulated to have a role as a membrane anchor for microfilaments and we have investigated the biochemistry of this molecule in more detail. We report that a fraction of vinculin in chick embryo fibroblasts is acylated by myristic acid. This modification was present in both membrane-bound, cytoskeletal and cytosolic vinculin and thus did not determine preferential subcellular localisation. Myristic acid was also present in vinculin from cells transformed by Rous sarcoma virus.  相似文献   

14.
Vinculin, a cytoskeletal substrate of protein kinase C   总被引:22,自引:0,他引:22  
Vinculin, a cytoskeletal protein localized at adhesion plaques, is a phosphoprotein containing phosphoserine, phosphothreonine, and phosphotyrosine. Vinculin has been previously shown to be a substrate for pp60src, a phosphotyrosine protein kinase, but the kinase(s) responsible for phosphorylation of the other amino acid residues is unknown. The present report examines the phosphorylation of vinculin by various serine- and threonine-specific protein kinases. Only protein kinase C, the calcium-activated phospholipid-dependent protein kinase, phosphorylates vinculin at a significant rate (24 nmol/min/mg) and displays marked specificity for vinculin. Both calcium and phosphatidylserine were required for vinculin phosphorylation by protein kinase C. In addition, both phorbol 12,13-dibutyrate (10 nM) and phorbol 12-myristate 13-acetate (10 nM) stimulated vinculin phosphorylation by protein kinase C at a limiting calcium concentration (10(-6) M). Tryptic peptide analysis revealed two major sites of phosphorylation. One site contained phosphoserine and the other contained phosphothreonine. When compared with tryptic maps of vinculin phosphorylated by src kinase, no overlapping phosphorylated peptides were found. The present findings coupled with the plasma membrane location of both these proteins suggest that vinculin may be a physiologic substrate for protein kinase C.  相似文献   

15.
We have investigated the expression and distribution of talin and vinculin in the oocytes, eggs, and embryos of Xenopus laevis. Antibodies to the previously characterized avian proteins stain several different Xenopus cell types identically by immunofluorescence: adhesion plaques of cultured kidney (A6) cells, the cell peripheries of oviduct cells, and the postsynaptic neuromuscular junctions of tadpole tail muscle fibers. These antibodies also identify cognate proteins of the appropriate sizes on immunoblots of A6 cell and oviduct lysates. Using these antibodies on ovarian tissue, we find talin to be highly localized at the cortices of oocytes and vinculin to be in the oocyte cytoplasm and absent from the oocyte cortex. In the cells of the ovarian layers that surround the oocytes, talin and vinculin can be detected as soluble and cytoskeletal components. Vinculin is first detectable as a cytoskeletal component in eggs, appearing some time during or between oocyte maturation and oviposition. During early embryo development, talin and vinculin are colocalized in the cortex of cleavage furrows and blastomeres. Thus, Xenopus oocytes and eggs display different distributions of talin and vinculin. The change from unlinked localization to colocalization appears to be developmentally regulated, occurring during the transition from oocyte to egg.  相似文献   

16.
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.  相似文献   

17.
Specific interaction of vinculin with alpha-actinin   总被引:33,自引:0,他引:33  
Vinculin and alpha-actinin are cytoskeletal proteins present at focal contacts of the ventral surface of cultured fibroblasts. We labelled alpha-actinin with an acceptor fluorophore and vinculin with a donor. A mixture of vinculin and alpha-actinin showed a 28% quench, due to energy transfer, suggesting an interaction. Quench of vinculin was dependent on the concentration of alpha-actinin; Scatchard analysis gives a dissociation constant in the microM range. Quench was inhibited by excess unlabelled alpha-actinin, and by reaction of the acceptor protein with p-chloromercuribenzoate. We found that vinculin had a slightly greater elution volume in a gel filtration column equilibrated with alpha-actinin, indicating a higher effective Stokes radius due to the interaction of the two proteins.  相似文献   

18.
The cytoskeletal component vinculin has been proposed to act as an actin-plasma membrane linker. In order to demonstrate a possible direct interaction of vinculin with bilayers, photolabeling with a phospholipid generating a highly reactive carbene was used. This phosphatidylcholine analogue (1-palmitoyl-2-[10-[4-[(trifluoromethyl)diazirinyl]phenyl]-[3H] 9-oxaundecanoyl]-sn-glycero-3-phosphocholine), with the photoactivatable diazirine group on its apolar portion, has been shown to label selectively membrane-embedded domains of membrane proteins. Vinculin is significantly labeled upon incubation and photolysis with liposomes containing trace amounts of this photoactivatable phospholipid, but only when the liposomes also contain acidic phospholipids. Labeling of vinculin is markedly increased (5-17-fold) by all acidic phospholipids tested so far (30%, w/w), compared to labeling in neutral phospholipids. Labeling is high at low ionic strength, but significant vinculin labeling can still be observed at physiological salt concentrations and acidic phospholipid content of the membrane. Our results provide evidence that vinculin inserts into the hydrophobic part of the bilayer by interacting with acidic phospholipids. A similar interaction may be of importance in vivo.  相似文献   

19.
Vinculin is a 130 kD cytoskeletal protein which is involved in the anchorage of actin microfilaments to the plasma membranes at sites of cell-cell and cell-matrix contacts. In this paper we prove that smooth and cardiac muscles of Xenopus laevis contain a specific isoform of vinculin not present in any other tissue including skeletal muscle and epithelia and we demonstrate that this form of the molecule is characterized by a specific state of phosphorylation. These data are discussed in view of the importance of posttranslational modifications of structural proteins, such as vinculin, in the determination of cellular behaviour during differentiation and development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号