首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: We examined the mechanism underlying the ATP-induced increase in the cytosolic Ca2+ concentration ([Ca]in) in acutely isolated chick ciliary ganglion neurons, using fura-2 microfluorometry. The ATP-induced increase in [Ca]in was dependent on external Ca2+, was blocked in a dose-dependent manner by reactive blue 2, and was substantially inhibited by both L- and N-type Ca2+ channel blockers. ATP was effective in increasing [Ca]in in the presence of a desensitizing concentration of nicotine (100 µ M ), and simultaneous addition of maximal doses of ATP and nicotine caused an additive increase in [Ca]in, suggesting that ATP acts on a site distinct from nicotinic acetylcholine receptors. ATP also increased the cytosolic Na+ concentration as determined by sodium-binding benzofuran isophthalate microfluorometry. These results suggest that ATP increases Na+ influx through P2 purinoceptor-associated channels resulting in membrane depolarization, which in turn increases Ca2+ influx through voltage-dependent Ca2+ channels. However, ATP still caused a small increase in [Ca]in under Na+-free conditions, and this [Ca]in increase was little affected by Ca2+ channel blockers. ATP also increased Mn2+ influx under Na+-free conditions, as indicated by quenching of fura-2 fluorescence. These results suggest that nonselective cationic channels activated by ATP are permeable not only to Ca2+ but also to Mn2+, in addition to monovalent cations.  相似文献   

2.
Abstract: The growth cone is responsible for axonal elongation and pathfinding by responding to various modulators for neurite growth, including neurotransmitters, although the sensor mechanisms are not fully understood. Among neurotransmitters, GABA is most likely to demonstrate activity in vivo because GABA and the GABAA receptor appear even in early stages of CNS development. We investigated the GABAA receptor-mediated signaling pathway in the growth cone using isolated growth cones (IGCs). Both the GABAA binding site and the benzodiazepine modulatory site were enriched in the growth cone membrane. In the intact IGC, GABA induced picrotoxin-sensitive Cl flux (not influx but efflux) and increased the intracellular Ca2+ concentration in a picrotoxin- and verapamil-sensitive manner. Protein kinase C (PKC)-dependent phosphorylation of two proteins identified as GAP-43 and MARCKS protein was enhanced in the intact IGC stimulated by GABA, resulting in the release of MARCKS protein and GAP-43 from the membrane. Collectively, our results suggest the following scheme: activation of the functional GABAA receptor localized in the growth cone membrane → Cl efflux induction through the GABAA-associated Cl channel → Ca2+ influx through an L-type voltage-sensitive Ca2+ channel → Ca2+-dependent phosphorylation of GAP-43 and MARCKS protein by PKC.  相似文献   

3.
Abstract: For the purpose of demonstrating the action of taurine as a neuromodulator in addition to its suggested neurotransmitter function, the effects of taurine and muscimol on the depolarization-induced Ca-dependent release of [3H]γ-aminobutyric acid (pH]GABA) and l -[3H]glutamate in cerebellar slices from guinea pigs were investigated. The release of [3H]GABA was found to be greatly decreased by a GABA agonist, muscimol, and by taurine, but not by glycine. The release of l -[3H]glutamate was little affected by taurine. The release of [3H]GABA was enhanced by bicuculline and strychnine, but not by picrotoxin, and the suppressive action of muscimol on the GABA release was antagonized by bicuculline, picrotoxin, and strychnine, suggesting the possible existence of presynaptic autoreceptors for GABA in the cerebellum. The suppressive action of taurine on the release of [3H]GABA, on the other hand, was blocked only by bicuculline. These results suggest that taurine reduced the release of [3H]GABA from cerebellar slices by acting on the GABA autoreceptors or, more likely, on other types of receptors that are sensitive to bicuculline. As a possible mechanism for this modulatory action of taurine, the blockade by this amino acid of the influx of Ca2+ into cerebellar tissues was tentatively suggested.  相似文献   

4.
Abstract: The σ ligand 1,3-di- O -tolylguanidine (DTG) increased basal dynamin and decreased depolarization-stimulated phosphorylation of the synaptosomal protein synapsin Ib without having direct effects on protein kinases or protein phosphatases. DTG dose-dependently decreased the basal cytosolic free Ca2+ concentration ([Ca2+]i) and blocked the depolarization-dependent increases in [Ca2+]i. These effects were inhibited by the σ antagonists rimcazole and BMY14802. The nitric oxide donors sodium nitroprusside (SNP) and 8-( p -chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate decreased basal [Ca2+]i and the KCl-evoked rise in [Ca2+]i to an extent similar to DTG. SNP, but not DTG, produced a rise in cyclic GMP levels, suggesting that the effect of DTG on [Ca2+]i was not mediated via downstream regulation of cyclic GMP levels. DTG increased 45Ca2+ uptake and efflux under basal conditions and inhibited the 45Ca2+ uptake induced by depolarization with KCl. The KCl-evoked rise in [Ca2+]i was inhibited by ω-conotoxin (ω-CgTx)-GVIA and -MVIIC but not nifedipine and ω-agatoxin-IVA. The effect of DTG on decreasing the KCl-evoked rise in [Ca2+]i was additive with ω-CgTx-MVIIC but not with ω-CgTx-GVIA. These data suggest that DTG was producing some of its effects on synapsin I and dynamin phosphorylation and intrasynaptosomal Ca2+ levels via inhibition of N-type Ca2+ channels.  相似文献   

5.
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca2+]i) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca2+]i amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Δ2/Δ1 ≥ 0.80) and NPY-responsive neurons (Δ2/Δ1 < 0.80), being the Δ2/Δ1 the ratio between the amplitude of [Ca2+]i increase evoked by the second (Δ2) and the first (Δ1) stimuli of KCl. The NPY Y1/Y5, Y4, and Y5 receptor agonists (100 nM), but not the Y2 receptor agonist (300 nM), inhibited the [Ca2+]i increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca2+]i changes was reduced in the presence of the Y1 or the Y5 receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca2+]i increase in retinal neurons through the activation of NPY Y1, Y4, and Y5 receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.  相似文献   

6.
Abstract: Using a range of Ca2+ channel blockers we have investigated the Ca2+ channel subtypes that mediate the depolarisation-induced elevation of the intracellular free Ca2+ concentration ([Ca2+]i) and glutamate release from cultured rat cerebellar granule cells. ω-Conotoxin-GVIA had little effect on either the transient or plateau phase of the depolarisation-induced [Ca2+]i rise or on glutamate release, ruling out a significant role for N-type Ca2+ channels. Nifedipine substantially inhibited the initial transient rise in [Ca2+]i and the plateau phase of the [Ca2+]i rise and glutamate release, suggesting the involvement of L-type Ca2+ channels. Both ω-agatoxin and ω-conotoxin-MVIIC also inhibited the transient rise in [Ca2+]i and glutamate release but not the plateau phase of the [Ca2+]i rise. The inhibitions by nifedipine were not increased by coaddition of ω-conotoxin-MVIIC, suggesting overlapping sensitivity to these channel blockers. These data show that glutamate release from granule cells in response to depolarisation with a high KCI level involves Ca2+ currents that are sensitive to nifedipine, ω-agatoxin-IVA, and also ω-conotoxin-MVIIC. The overlapping sensitivity of the channels to these toxins prevents attribution of any of the phases of the [Ca2+]i rise or glutamate release to distinct P-, Q-, or O-type Ca2+ currents.  相似文献   

7.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

8.
Abstract: The effect of Zn2+ on t -[3H]butylbicycloorthobenzoate ([3H]TBOB) binding to the GABAA receptor complex was studied autoradiographically in rat brain. Zn2+ inhibited [3H]TBOB binding in a dose-dependent manner at physiological concentrations. Saturation analysis revealed noncompetitive inhibition in various brain regions. The inhibitory effect of Zn2+ had regional heterogeneity; regions showing the greatest inhibition of [3H]TBOB binding were cortical laminae I–III, most areas of hippocampus, striatum, septum, and cerebellar cortex. Regions with relatively less inhibition of [3H]TBOB binding included cortical laminae V–VI, thalamus, superior colliculus, inferior colliculus, and central gray matter. The effect of Zn2+ and those of other GABAA ligands, such as benzodiazepines, bicuculline, isoguvacine, and picrotoxin, on [3H]TBOB binding seemed to be additive. Ni2+, Cd2+, and Cu2+ also inhibited [3H]TBOB binding with a regional heterogeneity similar to that produced by Zn2+. These results are consistent with Zn2+ acting at the previously detected recognition site on the GABAA receptor complex, distinct from the picrotoxin, GABA, and benzodiazepine sites. The regional heterogeneity of the Zn2+ effect may reflect differential regional distribution of GABAA receptor subtypes among brain regions. Other divalent cations probably act at the Zn2+ binding site.  相似文献   

9.
Abstract: Nitric oxide has been recognized in recent years as an important mediator of neuronal toxicity, which in many cases involves alterations of the cytoplasmic Ca2+ concentration ([Ca2+]i). In [Ca2+]i fluorimetric experiments on cultured hippocampal neurons, the nitric oxide-releasing agent S -nitrosocysteine produced a delayed rise in [Ca2+]i over a 20-min exposure, which was accompanied by a progressive slowing of the kinetics of recovery from depolarization-induced [Ca2+]i transients. These effects were blocked by oxyhemoglobin and by superoxide dismutase, confirming nitric oxide as the responsible agent, and suggesting that they involved peroxynitrite formation. Similar alterations of [Ca2+]i homeostasis were produced by the mitochondrial ATP synthase inhibitor oligomycin, and when an ATP-regenerating system was supplied via the patch pipette in combined whole-cell patch-clamp-[Ca2+]i fluorimetry experiments, S -nitrosocysteine had no effect on the resting [Ca2+]i or on the recovery kinetics of [Ca2+]i transients induced by direct depolarization. We conclude that prolonged exposure to nitric oxide disrupts [Ca2+]i homeostasis in hippocampal neurons by impairing Ca2+ removal from the cytoplasm, possibly as a result of ATP depletion. The resulting persistent alterations in [Ca2+]i may contribute to the delayed neurotoxicity of nitric oxide.  相似文献   

10.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

11.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

12.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

13.
Calcium and plant action potentials   总被引:7,自引:4,他引:3  
Abstract. Under normal conditions the action potential in Characeae is dependent on the presence of both Cl and Ca2+. Cl seems to play a straightforward part as a transient depolarizing flow. The role of Ca2+, however, is emerging as an increasingly complex one: there are Ca2+ concentration changes in the cytoplasm, as well as transient Ca2+ currents across the plasmalemma and possibly the tonoplast. In most Characeae Ca2+ is necessary for the Cl channel to function, and it is also involved in the cessation of the cytoplasmic streaming observed at the time of excitation.
The function of Ca2+ at the time of the action potential is being revealed by experimental techniques of increasing sophistication. The development of these methods and possible associated artefacts are considered.  相似文献   

14.
Abstract: Substance P and neurokinin A both potentiated N -methyl- d -aspartate (NMDA)-induced currents recorded in acutely isolated neurons from the dorsal horn of the rat. To elucidate the mechanism underlying this phenomenon, we measured the effects of tachykinins and glutamate receptor agonists on [Ca2+]i in these cells. Substance P, but not neurokinin A, increased [Ca2+]i in a subpopulation of neurons. The increase in [Ca2+]i was found to be due to Ca2+ influx through voltage-sensitive Ca2+ channels. Substance P and neurokinin A also potentiated the increase in [Ca2+]i produced by NMDA, but not by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, or 50 m M K+. Phorbol esters enhanced the effects of NMDA and staurosporine inhibited the potentiation of NMDA effects by tachykinins. It is concluded that activation of protein kinase C may mediate the enhancement of NMDA effects by tachykinins in these cells. However, the effects of tachykinins on [Ca2+]i can be dissociated from their effects on NMDA receptors.  相似文献   

15.
Abstract: Nitric oxide (NO) has been shown to be an important mediator in several forms of neurotoxicity. We previously reported that NO alters intracellular Ca2+ concentration ([Ca2+]i) homeostasis in cultured hippocampal neurons during 20-min exposures. In this study, we examine the relationship between late alterations of [Ca2+]i homeostasis and the delayed toxicity produced by NO. The NO-releasing agent S -nitrosocysteine (SNOC; 300 µ M ) reduced survival by about one half 1 day after 20-min exposures, as did other NO-releasing agents. SNOC also was found to produce prolonged elevations of [Ca2+]i, persisting at 2 and 6 h. Hemoglobin, a scavenger of NO, blocked both the late [Ca2+]i elevation and the delayed toxicity of SNOC. Removal of extracellular Ca2+ during the 20-min SNOC treatment failed to prevent the late [Ca2+]i elevations and did not prevent the delayed toxicity, but removal of extracellular Ca2+ for the 6 h after exposure as well blocked most of the toxicity. Western blots showed that SNOC exposure resulted in an increased proteolytic breakdown of the structural protein spectrin, generating a fragment with immunoreactivity suggesting activity of the Ca2+-activated protease calpain. The spectrin breakdown and the toxicity of SNOC were inhibited by treatment with calpain antagonists. We conclude that exposures to toxic levels of NO cause prolonged disruption of [Ca2+]i homeostatic mechanisms, and that the resulting persistent [Ca2+]i elevations contribute to the delayed neurotoxicity of NO.  相似文献   

16.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

17.
Abstract: Lysophosphatidic acid (LPA) is a lipid biomediator enriched in the brain. A novel LPA-induced response in rat hippocampal neurons is described herein, namely, a rapid and sustained elevation in the concentration of free intracellular calcium ([Ca2+]i). This increase is specific, in that the related lipids phosphatidic acid and lysophosphatidylcholine did not induce an alteration in [Ca2+]i. Moreover, consistent with a receptor-mediated process, there was no further increase in [Ca2+]i after a second addition of LPA. The LPA-induced increase in [Ca2+]i required extracellular calcium. However, studies with Cd2+, Ni2+, and nifedipine and nystatin-perforated patch clamp analyses did not indicate involvement of voltage-gated calcium channels in the LPA-induced response. In contrast, glutamate appears to have a significant role in the LPA-induced increase in [Ca2+]i, because this increase was inhibited by NMDA receptor antagonists and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonists. Thus, LPA treatment may result in an increased extracellular glutamate concentration that could stimulate AMPA/kainate receptors and thereby alleviate the Mg2+ block of the NMDA receptors and lead to glutamate stimulation of an influx of calcium via NMDA receptors.  相似文献   

18.
Abstract In the present study we compared the intracellular level of free calcium ([Ca2+]i) and monomeric (G)/total (G + F) actin ratio in HeLa cells infected with diffuse (DAEC) and localised adherent Escherichia coli (LAEC). The level of [Ca2+]i was increased in both DAEC- and LAEC-infected HeLa cells. However, studies with EGTA- and dantrolene-treated cells and also suspension of cells in Ca2+-free buffer suggested that the rise of [Ca2+]i in DAEC-infected cells was due to the influx of Ca2+ from extracellular medium, whereas Ca2+ mobilisation from the intracellular stores was responsible for the enhancement of [Ca2+]i in LAEC-infected cells. It was also evident that the infection of HeLa cells with DAEC and LAEC caused alteration of G / G + F actin ratio as compared to that of control cells. The ratio was much lower in LAEC-infected cells than that of DAEC-infected ones. Moreover, cytochalasin B inhibited both DAEC and LAEC invasion to HeLa cells, suggesting further the role of microfilaments in the invasion process.  相似文献   

19.
We examined the effects of two egg jelly components, a fucose sulfate glycoconjugate (FSG) and sperm-activating peptide I (SAP-I: Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly), on the intracellular pH (pHi) and Ca2+ ([Ca2+]i) of spermatozoa of the sea urchin Hemicentrotus pulcherrimus . FSG and/or SAP-I induced elevations of [Ca2+]; and pHi in the spermatozoa at pH 8.0. At pH 8.0, a second addition of FSG did not induced further elevation of the [Ca2+]i or pHi of spermatozoa treated with FSG, but addition or FSG after SAP-I or of SAP-I after FSG induced further increases of [Ca2+]i and pHi, At pH 6.6, FSG and/or SAP-I did not induce significant elevation of the [Ca2+]i, although SAP-I elevated the pHi, its half-maximal effective concentration being 10 to 100 pM. At pH 8.0, tetraethyl-ammonium, a voltage-sensitive K+-channel blocker, inhibited induction of the acrosome reaction and elevations of [Ca2+]i and pHi by FSG, but did not affect those by SAP-I. These results suggest that FSG and SAP-I activate different Ca2+ and H+ transport systems.  相似文献   

20.
Elevation of intracellular Ca2+ concentration ([Ca2+]i) triggers exocytosis of secretory granules in pancreatic duct epithelia. In this study, we find that the signal also controls granule movement. Motions of fluorescently labeled granules stopped abruptly after a [Ca2+]i increase, kinetically coincident with formation of filamentous actin (F-actin) in the whole cytoplasm. At high resolution, the new F-actin meshwork was so dense that cellular structures of granule size appeared physically trapped in it. Depolymerization of F-actin with latrunculin B blocked both the F-actin formation and the arrest of granules. Interestingly, when monitored with total internal reflection fluorescence microscopy, the immobilized granules still moved slowly and concertedly toward the plasma membrane. This group translocation was abolished by blockers of myosin. Exocytosis measured by microamperometry suggested that formation of a dense F-actin meshwork inhibited exocytosis at small Ca2+ rises <1 μ m . Larger [Ca2+]i rises increased exocytosis because of the co-ordinate translocation of granules and fusion to the membrane. We propose that the Ca2+-dependent freezing of granules filters out weak inputs but allows exocytosis under stronger inputs by controlling granule movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号